首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of Cr2O3 modification on the performance of SnO2 electrodes in DSSCs
Authors:Choi Seo-Yeong  Kim Min-Hye  Kwon Young-Uk
Institution:SKKU Advanced Institute of Nanotechnology, and Department of Chemistry and BK-21 School of Chemical Materials Science, Sungkyunkwan University, Suwon 440-746, Korea.
Abstract:In this paper, we demonstrate that Cr(2)O(3), a visible absorbing insulator, can be used as an efficient blocking layer material for the anode of dye-sensitized solar cells (DSSCs). We prepared SnO(2) electrodes surface-modified with Cr(2)O(3) with various Cr/Sn ratios and studied the effect of the modification on the performance of DSSCs. DSSCs with Cr/Sn ratios 0.02, 0.05, and 0.10 showed increased overall photon-to-electricity conversion efficiency from that of pure SnO(2). Especially, the DSSC with the Cr/Sn ratio 0.02 showed a remarkably large increase by 55%. The electrode materials were analyzed by powder X-ray diffraction, transmission electron microscopy, N(2) adsorption studies, and UV-Vis diffuse reflectance spectroscopy. The Cr-containing species appears to be Cr(2)O(3) nanoparticles, spread evenly on the SnO(2) nanoparticles and filling the gap space between SnO(2) particles. The electrochemical properties of the electrodes were characterized by Mott-Schottky plots and electrochemical impedance spectroscopy. As the Cr-content increases, the flat-band potential is negatively shifted. The impedance spectroscopy data show that Cr/Sn = 0.02 and 0.05 samples have lower charge transport resistance at the electrode, which can be explained by the rise of the conduction level due to the charge transfer from the more basic Cr(2)O(3) nanoparticles to SnO(2) nanoparticles. These observations corroborate with the trends of the short-circuit current and the open-circuit voltage of the DSSCs.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号