首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Accurate quantum chemical energies for the interaction of hydrocarbons with oxide surfaces: CH(4)/MgO(001)
Authors:Tosoni Sergio  Sauer Joachim
Institution:Institut für Chemie, Unter den Linden 6 and Center of Excellence UNICAT, Humboldt Universit?t Berlin, 10117 Berlin, Germany.
Abstract:We examine the adsorption of CH(4) on the MgO(001) surface by a hybrid approach. It combines MP2 calculations with extrapolation to the complete basis set limit for the adsorption site and the CH(4)-CH(4) pair interactions in the adsorbate layer, with DFT+dispersion calculations under periodic boundary conditions for the whole system. To the total binding energy of 10.7 kJ mol(-1), the DFT+D(ispersion) correction contributes 0.7 kJ mol(-1) only, showing that the Mg(9)O(9) two-layer surface model is an excellent choice and that the interaction between the CH(4) molecules in the adsorbate layer is dominated by pair interactions. Contributions due to relaxation of the atom positions of 0.6 kJ mol(-1) (evaluated at DFT+dispersion) and of higher order correlation effects of 2.0 kJ mol(-1) (evaluated by CCSD(T)) yield a final estimate of 13.3 kJ mol(-1). To this total adsorption energy, the lateral interactions between the CH(4) molecules in the adsorbate layer contribute substantially, 4.1 kJ mol(-1)."Observed" desorption energies of 15.3 and 16.0 kJ mol(-1) have been derived from the observed Arrhenius desorption barriers (12.6 and 13.1 kJ mol(-1)) using thermal enthalpy contributions and a substantial zero-point energy (4.2 kJ mol(-1)) calculated from DFT+D vibrational frequencies. The comparison shows that our final hybrid MP2?:?PBE+D+ΔCCSD(T) estimate has reached chemical accuracy. It misses 2-3 kJ mol(-1) of binding only, which is most likely due to missing higher order correlation effects.PBE+D(ispersion) itself yields an adsorption energy that agrees within 1 kJ mol(-1) with our final hybrid MP2?:?PBE+D+ΔCCSD(T) estimate.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号