首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Investigation of double-stranded DNA/drug interaction by ESI/FT ICR: orientation of dissociations relates to stabilizing salt bridges
Authors:Xu Ying  Afonso Carlos  Wen Ren  Tabet Jean-Claude
Institution:Université Pierre et Marie Curie-Paris 6, UMR 7613 Synthèse, Structure et Fonction de Molécules Bioactives, Paris, F-75005, France.
Abstract:Noncovalent complexes of DNA and Hoechst 33258 were investigated by ESI-FT/ICR MS in various activation modes (collision-induced dissociation (CID), sustained off-resonance irradiation collision-induced dissociation (SORI-CID), infrared multiphoton dissociation (IRMPD) and electron detachment dissociation (EDD)). The binding selectivity of Hoechst 33258 was confirmed by the comparative study of its noncovalent association with different DNA sequences. The CID spectra of ds + HO - 5H](5-) obtained with a linear hexapole ion trap resulted in unzipping of the strands. This outcome is a clue to the drug-binding mode, shading light on the localization of the binding sites of Hoechst 33258 to the DNA sequence. The IRMPD and SORI-CID experiments mainly gave DNA backbone cleavages and internal fragment ions. From this result, information on the localization of the binding sites of Hoechst 33258 in the DNA sequence was obtained. No sodium cationization was observed on the DNA sequence ions although they were present on fragmentation of the duplex, indicating that the backbone cleavages were generated from the single strand associated with the Hoechst 33258 where the number of alkali cation is restricted. Under electron detachment (ED) conditions, multiple EDs were achieved for the ds + HO - 5H](5-) ion without any significant dissociation. The presence of drug appears to enhance the stability of the multiply charged system. It was proposed that the studied noncovalent complex involved the formation of zwitterions and consequently strong salt-bridge interactions between DNA and drug.
Keywords:FT/ICR  DNA/drug complex  zwitterion  salt bridge  IRMPD  EDD
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号