首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Redox buffering in an electrospray ion source using a copper capillary emitter.
Authors:G J Van Berkel  V Kertesz
Institution:Organic and Biological Mass Spectrometry Group, Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6365, USA. vanberkelgj@ornl.gov
Abstract:An electrospray ion source used in electrospray mass spectrometry is a two-electrode, controlled-current electrochemical flow cell. Electrochemical reactions at the emitter electrode (oxidation and reduction in positive and negative ion modes respectively) provide the excess charge necessary for the quasi-continuous production of charged droplets and ultimately gas-phase ions with this device. We demonstrate here that a copper capillary emitter, in place of the more commonly used stainless-steel capillary emitter, can be utilized as a redox buffer in positive ion mode. Anodic corrosion of the copper capillary during normal operation liberates copper ions to solution and in so doing maintains the interfacial potential at this electrode near the equilibrium potential for the copper corrosion process E degrees = 0.34 V versus standard hydrogen electrode (SHE)]. Fixing the interfacial potential at the emitter electrode provides control over the electrochemical reactions that take place at this electrode. It is shown that the oxidation of N-phenyl-1,4-phenylenediamine to N-phenyl-1,4-phenylenediimine (E(p/2) = 0.48 V versus SHE) can be completely avoided using the copper emitter, whereas this analyte is completely oxidized with a stainless-steel capillary emitter under the same conditions. Moreover, using N-phenyl-1,4-phenylenediimine, we demonstrate that reduction reactions can occur at the copper emitter electrode in positive ion mode. Emitter corrosion, in addition to redox buffering, provides a convenient means to introduce metal ions into solution for analytical use in electrospray mass spectrometry.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号