首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Temperature-induced self-assembly of triple-responsive triblock copolymers in aqueous solutions
Authors:Weiss Jan  Laschewsky André
Institution:Department of Chemistry, Universita?t Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm, Germany.
Abstract:A series of triple-thermoresponsive triblock copolymers from poly(N-n-propylacrylamide) (PNPAM, A), poly(methoxydiethylene glycol acrylate) (PMDEGA, B), and poly(N-ethylacrylamide) (PNEAM, C) was synthesized by sequential reversible addition-fragmentation chain transfer polymerizations. Polymers of differing block sequences, ABC, BAC, and ACB, with increasing phase transition temperatures in the order A < B < C were prepared. Their aggregation behavior in dilute aqueous solution was investigated using dynamic light scattering, turbidimetry, and NMR spectroscopy. The self-organization of such polymers was found to dependent strongly on the block sequence. While polymers with a terminal low-LCST (lower critical solution temperature) block undergo aggregation above the first phase transition temperature at 20-25 °C, triblock copolymers with the low-LCST block in the middle show aggregation only above the second phase transition. The collapse of the middle block is not sufficient to induce aggregation but produces instead stable, unimolecular micelles with a collapsed middle block, as supported by NMR and fluorescence probe data. Continued heating of all copolymers led to two additional thermal transitions at 40-55 and 70-80 °C, which could be correlated to the phase transitions of the B and C blocks, respectively. All polymers show a high tendency for cluster formation, once aggregation is induced. The carrier abilities of the triple responsive triblock copolymers for hydrophobic agents were probed with the solvatochromic fluorescence dye Nile Red. With passing through the first thermal transition, the block copolymers are capable of solubilizing Nile Red. In the case of block copolymers with sequences ABC or ACB, which bear the low-LCST block at one terminus, notable amounts of dye are solubilized already at this stage. In contrast, the hydrophobic probe is much less efficiently incorporated by the BAC triblock copolymer, which forms unimolecular micelles. Only after the collapse of the B block, when reaching the second phase transition at about 45 °C, does aggregation occur and solubilization becomes efficient. In the case of ABC and ACB polymers, the hydrophobic probe seems to partition between the originally collapsed A chains and the additional hydrophobic chains formed after the collapse of the less hydrophobic B block.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号