首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Interfacial friction of surfaces grafted with one- and two-component self-assembled monolayers
Authors:Zhang Qing  Archer Lynden A
Institution:School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA.
Abstract:We present a quantitative study of the nanoscale frictional properties of one-component (pure) and two-component (mixed) alkylsilane self-assembled monolayers (SAMs). The load and velocity dependence of the friction force was measured in air and ethanol using lateral force microscopy (LFM). It was observed that for SAMs with well-ordered structure (pure SAMs and mixed SAMs composed of two long chain molecules) friction depends nonlinearly on load, at low loads, both in air and in ethanol. These observations are consistent with the low-load contact area predictions of the Johnson-Kendall-Roberts (JKR) theory, indicating that for well-ordered SAMs friction force is proportional to contact area and that the true contact area is determined by elastic deformation of the SAM by the LFM probe. In ambient air, the magnitude of the friction force measured using mixed SAMs is found to be similar to that obtained using pure SAMs at the same external load. Changing the medium to ethanol, however, leads to dramatically lower friction in the mixed SAMs. An analysis of the friction data using a thermally activated Eyring model that takes into account the monolayer viscoelasticity suggests that the better friction properties of the mixed SAMs are a consequence of greater disorder and higher molecular mobility in the outer layer/canopy. These findings indicate that multi-tiered SAM coatings comprising a highly ordered underlayer and a disordered, mobile canopy can provide the basis for low-friction coatings for small mechanical systems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号