首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Flocculation mechanism induced by cationic polymers investigated by light scattering
Authors:Zhou Ying  Franks George V
Institution:Chemical Engineering and the Centre for Multiphase Process, University of Newcastle, Callaghan, NSW 2308 Australia.
Abstract:Three cationic polymers with molecular weights and charge densities of 3.0 x 10(5) g/mol and 10%, 1.1 x 10(5) g/mol and 40%, and 1.2 x 10(5) g/mol and 100% were chosen as flocculants to aggregate silica particles (90 nm), under various conditions, including change in polymer dosage, particle concentration, background electrolyte concentration, and shear rate. The size and structure of flocs produced were determined using the static light scattering technique. On the basis of measurements of polymer adsorption and its effect on the zeta potential and floc properties, it has been found that the polymer charge density plays an important role in determining the flocculation mechanism. Polymers with a 10% charge density facilitate bridging, 40% charged polymers bring about either a combination of charge neutralization and bridging or bridging, depending on the polymer dosage, and polymers with the charge density of 100% induce electrostatic patch flocculation mechanism at the optimum polymer dosage and below but bring about bridging mechanism at the polymer dosage approaching the adsorption plateau value. Bridging aggregation can readily be affected by the particle concentration, and an increase in particle concentration results in the formation of larger but looser aggregates, whereas electrostatic patch aggregation is independent of particle concentration. The addition of a background electrolyte aids in bridging aggregation while it is detrimental to electrostatic patch aggregation. It has also been found that the effect of shear rate on the mass fractal dimension depends on polymer charge density.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号