首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Covalent attachment of a nickel nitrilotriacetic acid group to a germanium attenuated total reflectance element
Authors:Smith Brandye M  Lappi Simon E  Brewer Scott H  Dembowy Szymon  Belyea Jennifer  Franzen Stefan
Institution:Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.
Abstract:The surface of a germanium internal reflectance element (IRE) was modified to bind 6X-histidine (his)-tagged biomolecules. The step-by-step surface modification was monitored via single-pass attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT-IR). Initially an adlayer of 7-octenyltrimethoxysilane (7-OTMS) was formed on the Ge crystal through the surface hydroxyl groups, which were produced via ozonolysis of the Ge surface. The vinyl moiety of 7-OTMS was oxidized to a carboxylic acid, which was activated by 1,1'-carbonydiimidazole (CDI) to produce a labile imidazole. The labile imidazole that resulted from the CDI coupling was then displaced by the primary amine of nitrilotriacetic acid (NTA). Nickel sulfate was added to the system, and it coordinated with the three carbonyl groups and the nitrogen on NTA, thus leaving the ability of Ni to coordinate with two adjacent histidine residues. Binding of his-tagged biotin to nickel nitrilotriacetic acid (Ni-NTA) was observed by ATR-FT-IR spectroscopy. The surface modification method presented in this paper had minimal nonspecific binding, the Ni-NTA surface was reusable if stored properly, and complete removal of the organic surface was achievable.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号