首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis of Tetraoxygenated Terephthalates via a Dichloroquinone Route: Characterization of Cross‐Conjugated Liebermann Betaine Intermediates
Abstract:Cross‐conjugated quinoid betaines 4 (2,5‐bis(alkoxycarbonyl)‐3,6‐dioxo‐4‐(1‐pyridinium‐1‐yl)cyclohexa‐1,4‐dien‐1‐olates; Liebermann betaines) were synthesized from 2,5‐dichloro‐3,6‐dioxocyclohexa‐1,4‐diene‐1,4‐dicarboxylates ( 2 ) and pyridines in acetone containing H2O. Their structure was secured by NMR spectroscopy and by X‐ray diffraction analysis of 4f (alkoxy = EtO, pyridine = 4‐Me2N–C5H4N). Betaines 4 show comparatively high reactivity towards nucleophiles as a consequence of their cross‐conjugated character. Betaine 4a and hydroxy‐3,4‐methylenedioxybenzene (sesamol) condense to give a pyridinium quinolate salt 14 which has a bifurcate H‐bond from a pyridinium N+–H donor to both carbonyl (C=O) and olate (C–O?) acceptors in the solid state. Betaine 4b hydrolyzes in aqueous solution to give diethyl 2,5‐dihydroxy‐3,6‐dioxocyclohexa‐1,4‐diene‐1,4‐dicarboxylate ( 11 ) as a pyridinium salt, or as polymeric zinc(II) complex of the dianion of 11 in the presence of ZnCl2. Dihydroxyquinone 11 was analytically differentiated from its independently prepared hydroquinone form, diethyl 2,3,5,6‐tetrahydroxyterephthalate ( 12 ), by NMR analysis in solution and X‐ray crystal structure determination of both compounds.
Keywords:Betaines  Conjugation  Nitrogen heterocycles  Quinones  Structure elucidation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号