首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Silbermercaptide und -mercaptokomplexe
Authors:K Tunaboylu  G Schwarzenbach
Abstract:The complex formation of silver(I) has been studied with the anions of simple mercaptans RSH which have been rendered soluble by replacing some H in the substituent R by OH. All equilibria constants refer to a solvent of ionic strength μ = 0,1 and 20°C. Monothioglycol HO? CH2? CH2? SH (pK = 9.48) forms an amorphous insoluble mercaptide {AgSR} (s), ionic product Ag+] SR?] = 10?19.7. The solution in equilibrium with the solid contains the molecule AgSR at a constant concentration of 10?6.7 M which furnishes the formation constant of the 1:1-complex: K1 = 1013. 0. The solid is soluble in excess of mercaptide (AgSR+SR? → Ag(SR)2?: K2 = 104. 8) as well as in an excess of silver ion (AgSR + Ag+ → Ag2SR+K ≈? 106). With the bulky monothiopentaerythrite (HO? CH2? )3C? CH2? SH (pK = 9.89) no precipitation occurs with silver when the mercaptan concentration is below 10?3. 2M. A single polynuclear Ag10(SR)9+10.9 = 10175) is formed in acidic solutions which breaks up with the formation of Ag2SR+2.1 = 1019.0) when an excess of silver ion is added. Below the mononuclear wall (RS]total < 10?6) Ag2SR+ is formed via the mononuclear AgSR (K1 = 1013). At higher mercaptan concentrations (RS]tot > 10?3.2) an amorphous precipitate is formed which has almost the same solubility product as silver thioglycolate (Ag+] SR?] = 10?19.1). Apparently silver(I) forms with mercaptans always the complexes Ag2SR+, AgSR and Ag(SR)2?. Above the mononuclear wall, these species condense to chain-like polynuclears which are cations Ag(SRAg)n+ in presence of an excess of Ag+, and anions SR (AgSR)n? when the concentration RS?] is larger than Ag+]. Usually n becomes rapidly very large as soon as the condensation starts (n → ∞: precipitate). The decanuclear Ag(SRAg)9+ formed with thiopentaerythrit is somewhat more stable than the shorter chains (n < 9) and larger chains (n > 9), because it can tangle up to a ball by coordination of bridging mercapto-sulfur to the terminal silver ions (figure 12, page 2179). This ball seems to be further stabilized by hydrogen bonds between the many alcoholic OH groups of the substituent R = (HO? CH2)3C? CH2? . The stability of the bonds Ag? S, however, is little influenced by the substituent R which carries the mercaptide sulfure.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号