首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Improved Voltammetric Response of L‐Tyrosine on Multiwalled Carbon Nanotubes‐Ionic Liquid Composite Coated Glassy Electrodes in the Presence of Cupric Ion
Authors:Liqin Liu  Faqiong Zhao  Fei Xiao  Baizhao Zeng
Institution:Department of Chemistry, Wuhan University, Wuhan 430072, P.?R. China
Abstract:L ‐Tyrosine can exhibit a small anodic peak on multiwalled carbon nanotubes (MWCNTs) coated glassy carbon electrodes (GCE). At pH 5.5 its peak potential is 0.70 V (vs. SCE). When an ionic liquid (i.e., 1‐octyl‐3‐methylimidazolium hexafluorophosphate, omim]PF6]) is introduced on the MWCNT coat, the peak becomes bigger. Furthermore, in the presence of Cu2+ ion the anodic peak of L ‐tyrosine increases further due to the formation of Cu2+‐L ‐tyrosine complex, while the peak potential keeps unchanged. Therefore, a sensitive voltammetry based on the oxidation of Cu2+‐L ‐tyrosine complex on MWCNTs‐omim]PF6] composite coated electrode is developed for L ‐tyrosine. Under the optimized conditions, the anodic peak current is linear to L ‐tyrosine concentration in the range of 1×10?8–5×10?6 M, and the detection limit is 8×10?9 M. The modified electrode shows good reproducibility and stability. In addition, the voltammetric behavior of other amino acids is explored. It is found that among them tryptophan (Trp) and histidine (His) can also produce sensitive anodic peak under same experimental conditions, and their detection limits are 4×10?9 M and 4×10?6 M, respectively.
Keywords:Ionic liquid  L‐Tyrosine  Cupric ion  Multiwalled carbon nanotubes  Modified electrode
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号