首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Human Albumin-Based Hydrogels for Their Potential Xeno-Free Microneedle Applications
Authors:Xiaona Rong  Nabila Mehwish  Xueming Niu  Niteng Zhu  Bae Hoon Lee
Institution:1. Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325011 China

Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000 China;2. Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325011 China;3. Wenzhou Medical University, School of Biomedical Engineering, Wenzhou, Zhejiang, 325000 China

Abstract:Nowadays, hydrogels-based microneedles (MNs) have attracted a great interest owing to their outstanding qualities for biomedical applications. For the fabrication of hydrogels-based microneedles as tissue engineering scaffolds and drug delivery carriers, various biomaterials have been tested. They are required to feature tunable physiochemical properties, biodegradability, biocompatibility, nonimmunogenicity, high drug loading capacity, and sustained drug release. Among biomaterials, human proteins are the most ideal biomaterials for fabrication of hydrogels-based MNs; however, they are mechanically weak and poorly processible. To the best of the knowledge, there are no reports of xeno-free human protein-based MNs so far. Here, human albumin-based hydrogels and microneedles for tissue engineering and drug delivery by using relatively new processible human serum albumin methacryloyl (HSAMA) are engineered. The resultant HSAMA hydrogels display tunable mechanical properties, biodegradability, and good biocompatibility. Moreover, the xeno-free HSAMA microneedles display a sustained drug release profile and significant mechanical strength to penetrate the model skin. In vitro, they also show good biocompatibility and anticancer efficacy. Sustainable processible human albumin-based biomaterials may be employed as a xeno-free platform in vivo for tissue engineering and drug delivery in clinical trials in the future.
Keywords:drug delivery system  human albumin hydrogels  microneedles  protein-based biomaterial  tissue engineering
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号