首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Detailed experimental and kinetic modeling study of 3-carene pyrolysis
Authors:Jia Zhang  Florence Vermeire  Ruben Van de Vijver  Olivier Herbinet  Frédérique Battin-Leclerc  Marie-Françoise Reyniers  Kevin M Van Geem
Institution:1. Laboratory for Chemical Technology, Ghent University, Gent, Belgium;2. Université de Lorraine, CNRS, LRGP, Nancy, France
Abstract:3-Carene is an important potential biofuel with properties similar to the jet-propellant JP-10. Its thermal decomposition and combustion behavior is to date unknown, which is essential to assess its quality as a fuel. A combined experimental and kinetic modeling study has been conducted to understand the initial decomposition of 3-carene. The pyrolysis of 3-carene was investigated in a jet-stirred quartz reactor at atmospheric pressure, at temperatures varying from 650 to 1050 K, covering the complete conversion range. The decomposition of 3-carene was observed to start around 800 K, and it is almost complete at 970 K. Online gas chromatography shows that primarily aromatics are generated which suggests that 3-carene is not a good fuel candidate. The potential energy surface for the initial decomposition pathways determined by KinBot shows that a hydrogen elimination reaction dominates, giving primarily cara-2,4-diene. Next to this molecular pathway, radical pathways lead to aromatics via ring opening. The kinetic model was automatically generated with Genesys and consists of 2565 species and 9331 reactions. New quantum chemical calculations at the CBS-QB3 level of theory were needed to calculate rate coefficients and thermodynamic properties relevant for the primary decomposition of 3-carene. Both the conversion of 3-carene and the yields of the primary products (ie, benzene and hydrogen gas) are well predicted with this kinetic model. Rate of production analyses shows that the dominant pathways to convert 3-carene are hydrogen elimination reaction and radical chemistry.
Keywords:3-carene  aromatics formation  automatic kinetic model generation  jet-stirred reactor  potential energy surface
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号