首页 | 本学科首页   官方微博 | 高级检索  
     检索      


New Promises and Opportunities in 3D Printable Inks Based on Coordination Compounds for the Creation of Objects with Multiple Applications
Authors:Noelia Maldonado  Dr Pilar Amo-Ochoa
Institution:Department of Inorganic Chemistry, Autonomous University of Madrid, 28049 Madrid, Spain
Abstract:This review focuses on the usefulness of coordination bonds to create 3D printable inks and shows how the union of chemistry and 3D technology contributes to new scientific advances, by allowing amorphous or polycrystalline solids to be transformed into objects with the desired shape for successful applications. The review clearly shows how there has been considerable increase in the manufacture of objects based on the combination of organic matrices and coordination compounds. These coordination compounds are usually homogeneously dispersed within the matrix, anchored onto a proper support or coating the printed object, without destroying their unique properties. Advances are so rapid that today it is already possible to 3D print objects made exclusively from coordination compounds without additives. The new printable inks are made mainly with nanoscale nonporous coordination polymers, metal–organic gels, or metal–organic frameworks. The highly dynamic coordination bond allows the creation of objects, which respond to stimuli, that can act as sensors and be used for drug delivery. In addition, the combination of metal–organic frameworks with 3D printing allows the adsorption or selective capacity of the object to be increased, relative to that of the original compound, which is useful in energy storage, gas separation, or water pollutant elimination. Furthermore, the presence of the metal ion can give them new properties, such as luminescence, that are useful for application in sensors or anticounterfeiting. Technological advances, the combination of various printing techniques, and the properties of coordination bonds lead to the creation of surprising, new, printable inks and objects with highly complex shapes that will close the gap between academia and industry for research into coordination compounds.
Keywords:additive manufacturing  coordination bonds  coordination polymers  metal–organic frameworks  three-dimensional printing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号