首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Microbial desulfurization of waste latex rubber with Alicyclobacillus sp.
Authors:Chu Yao  Suhe Zhao  Yaqin Wang  Bingwu Wang  Meiling Wei  Minghan Hu
Institution:1. State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China;2. Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
Abstract:A microbe with desulfurizing capability, Alicyclobacillus sp., was selected to recycle waste latex rubber (WLR). The growth characteristics of the microorganism and the technical conditions in the co-culture desulfurization process were studied. The desulfurization effect of Alicyclobacillus sp. on the WLR was characterized, and the mechanism for the microbial desulfurization of WLR was tentatively explored. The results showed that adding 5% (w/v) WLR into medium had little effect on the growth of Alicyclobacillus sp. The surfactant polysorbate 80 (Tween 80) had a toxic effect on Alicyclobacillus sp., but the growth of the microbe was vigorous if the proper technique was used: the mixing of WLR with Tween 80, followed by the addition of the mixture into the culture media. With the increase of desulfurization time, the swelling value of desulfurizated waste latex rubber (DWLR) increased, but the crosslink density decreased. After co-culture desulfurization for 8–10 days, a DWLR with good desulfurization effect was obtained. The mechanical properties of natural rubber (NR)/DWLR composite improved significantly over those of NR/WLR composite. XPS and FTIR results revealed that Alicyclobacillus sp. could break the crosslinked sulfur bonds and oxidize them to sulfones groups. The increase of O element content on the surface of DWLR was confirmed by water contact angle measurements. The relationship between the crosslink density and sol fraction of DWLR with different desulfurization times agreed with the Horikx equation, an indication that the microorganisms could break the crosslinked sulfur bonds on the surface of WLR, but leaving the main chains intact.
Keywords:Latex rubber  Alicyclobacillus sp    Microbial desulfurization  Technical condition  Surface structure  Mechanism
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号