首页 | 本学科首页   官方微博 | 高级检索  
     检索      

非血红素铁(III)活化氧分子反应的自旋轨道耦合和零场分裂
引用本文:吕玲玲,王小芳,朱元成,刘新文,袁焜,王永成.非血红素铁(III)活化氧分子反应的自旋轨道耦合和零场分裂[J].物理化学学报,2013,29(8):1673-1680.
作者姓名:吕玲玲  王小芳  朱元成  刘新文  袁焜  王永成
作者单位:1.College of Life science and Chemistry, Tianshui Normal University, Tianshui 741001, Gansu Province, P. R. China;2.College of Chemistry and Chemical Engineering, Northwest Normal University, LanZhou 730070, P. R. China
基金项目:China,国家自然科学基金,甘肃省财政厅高校科研项目基金
摘    要:采用密度泛函理论对原儿茶酚3,4-双加氧酶(3,4-PCD)活化O2分子的反应机理进行了探讨. 初始复合物, 六重态61的超快形成主要归因于电子交换诱导系间穿越(EISC), Fe dz:O2 π*(z)是主要的交换通道, 在Fe―O键长为0.2487 nm处, 交换重叠积分Sij=ádz α|π*(z) β>=0.3758. 从六重态61 形成四重态中间体41, 有两种效应共存, 即电子交换耦合作用和自旋轨道耦合(SOC)作用, 且相互竞争. 计算结果表明, 自旋轨道耦合(SOC)作用起主导因素(SOC=353.16 cm-1). 至于O―O键的解离主要取决于儿茶酚(PCA)最高占据分子轨道(HOMO)的电子转移, 非血红素酶的铁中心仅承担PCA向O2电子转移的缓冲作用.22

关 键 词:原儿茶酚3  4-双加氧酶  自旋轨道耦合  零场分裂  反应机理  
收稿时间:2013-02-27
修稿时间:2013-06-04

Spin-Orbit Coupling and Zero-Field Splitting in Dioxygen Activation by Non-Heme Iron(Ⅲ)
L Ling-Ling , WANG Xiao-Fang , ZHU Yuan-Cheng , LIU Xin-Wen , YUAN Kun , WANG Yong-Cheng.Spin-Orbit Coupling and Zero-Field Splitting in Dioxygen Activation by Non-Heme Iron(Ⅲ)[J].Acta Physico-Chimica Sinica,2013,29(8):1673-1680.
Authors:L Ling-Ling  WANG Xiao-Fang  ZHU Yuan-Cheng  LIU Xin-Wen  YUAN Kun  WANG Yong-Cheng
Institution:1.College of Life science and Chemistry, Tianshui Normal University, Tianshui 741001, Gansu Province, P. R. China;2.College of Chemistry and Chemical Engineering, Northwest Normal University, LanZhou 730070, P. R. China
Abstract:The mechanism of the O2 activation by the protocatechuate 3,4-dioxygenase was investigated using density functional calculations. In the initial complex, the ultrafast formation of the sextet 61 was probably the result of electron-exchange-induced intersystem crossing, and Fe dz:O2 π*(z) was the dominant exchange pathway, with an overlap of dz: O2π*(z) was dominant exchange pathway with the overlap of Sij=ádz α|π*(z) β>=0.3758 at an Fe―O bond length of 0.2487 nm. Two coexisting effects, electron spin exchange coupling and spin-orbit coupling (SOC) in the sextet 61, are responsible for formation of the quartet state 41 from the sextet 61. The exchange interaction competes with the SOC interaction as a driving force for spin conversion. The calculated results show that the latter is the dominant factor, because of the larger SOC constant (353.16 cm-1). In cleavage of the O― O bond, electron transfer from the protocatechuate (PCA) highest occupied molecular orbital (HOMO) plays a vital role. The Fe center of the non-heme enzyme is a buffer to transfer an electron pair from the PCA HOMO to O2.222
Keywords:Protocatechuate 3  4-dioxygenase  Spin-orbit coupling  Zero-field splitting  Reaction mechanism
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号