首页 | 本学科首页   官方微博 | 高级检索  
     检索      

金红石相TiO_2纳米棒的氢化处理及其光催化活性
引用本文:崔海琴,井立强,谢明政,李志君.金红石相TiO_2纳米棒的氢化处理及其光催化活性[J].物理化学学报,2014,30(10):1903-1908.
作者姓名:崔海琴  井立强  谢明政  李志君
作者单位:Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
基金项目:The project was supported by the National Natural Science Foundation of China,Research Project of the Ministry of Education of China (213011A).国家自然科学基金,教育部科学技术研究项目
摘    要:以钛酸四丁酯为钛源,通过盐酸调制的水热法制备出了具有棒状结构的金红石相纳米TiO2,并进一步进行高温氢化处理.采用X射线衍射(XRD),透射电镜(TEM),紫外-可见-近红外漫反射(UV-Vis-NIR DRS),电子顺磁共振(EPR)和表面光伏(SPS)等测试手段对样品进行表征,以气相乙醛和液相苯酚为目标污染物考察催化剂的光催化活性.结果表明:随着高温氢化处理时间的延长,TiO2样品的可见光吸收逐渐增强,其颜色逐渐由白色转变成灰色,这主要与引入的Ti3+/氧空位缺陷有关.表面光电压谱和羟基自由基测试表明,适当时间的氢化处理有利于光生电荷的分离.在光催化氧化降解气相乙醛和液相苯酚过程中,经适当时间氢化处理的样品表现出高的可见光催化活性.并且可见光催化活性的规律与紫外光下的是一致的.这是因为氢化处理后在导带底下方引入了缺陷能级,拓展了可见光响应.过度的氢化处理会在TiO2导带下方引入较低的缺陷能级,使光生电荷的复合加剧,导致光催化活性降低.

关 键 词:TiO2  氢化处理  缺陷  光生电荷分离  光催化  
收稿时间:2014-06-24

Hydrogenated Rutile TiO2 Nanorods and Their Photocatalytic Activity
CUI Hai-Qin,JING Li-Qiang,XIE Ming-Zheng,LI Zhi-Jun.Hydrogenated Rutile TiO2 Nanorods and Their Photocatalytic Activity[J].Acta Physico-Chimica Sinica,2014,30(10):1903-1908.
Authors:CUI Hai-Qin  JING Li-Qiang  XIE Ming-Zheng  LI Zhi-Jun
Institution:Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
Abstract:TiO2 rutile nanorods were successfully synthesized by a hydrochloric acid-modified hydrothermal process, using butyl titanate as the titanium source, followed by hydrogenation treatment. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Vis near infrared (NIR) diffuse reflection spectroscopy (UV- Vis- NIR DRS), electron paramagnetic resonance (EPR), surface photovoltage spectroscopy (SPS), and the photodegradation of gas-phase acetaldehyde and liquid-phase phenol to evaluate the photocatalytic activity of the catalysts. The results show that the photoresponse of TiO2 gradually expands from the ultraviolet region to the visible and near-infrared regions upon increasing the hydrogenation time at high temperature. Its color changed from white to gray, and this is attributed to the introduction of Ti3+ defects and oxygen vacancies. Based on surface photovoltage spectroscopy responses and the amount of hydroxyl radicals produced, hydrogenation treatment promoted the photogenerated charge separation significantly. This is responsible for the improved photocatalytic degradation activity toward gasphase acetaldehyde and liquid-phase phenol under visible or ultraviolet irradiation. Therefore, a specific amount of defects and/or vacancies can induce new and appropriate surface states below the conduction band of the TiO2 samples. However, if the amount of introduced defects or vacancies is too high, low-level surface states are produced and this is not favorable for photogenerated charge separation, and detrimental to photocatalytic reactions.
Keywords:TiO2  Hydrogenation treatment  Defect  Photogenerated charge separation  Photocatalysis
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号