首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Ho(NO3)3(C2H5O2N)4·H2O的低温热容和热力学函数
引用本文:高肖汉,徐培,段文超,吕雪川,谭志诚,鲁强.Ho(NO3)3(C2H5O2N)4·H2O的低温热容和热力学函数[J].物理化学学报,2013,29(10):2123-2128.
作者姓名:高肖汉  徐培  段文超  吕雪川  谭志诚  鲁强
作者单位:1.School of Chemistry and Material Science, College of Chemistry and Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, Liaoning Province, P. R. China;2.Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, Liaoning Province, P. R. China
基金项目:国家自然科学基金(21103078, 21003069)资助项目
摘    要:合成了稀土(钬, Ho)-氨基酸(甘氨酸, C2H5O2N)二元配合物Ho(NO3)3(C2H5O2N)4·H2O, 并且通过化学分析、元素分析和红外(IR)光谱对配合物进行了表征. 用高精度全自动绝热量热仪, 测定了该配合物在80-390 K温度区间的定压摩尔热容(Cp,m). 利用实验测定的热容数据, 采用最小二乘法, 将热容曲线上热容峰以外的两段平滑区的摩尔热容对折合温度进行拟合, 建立了热容随折合温度变化的多项式方程. 根据热容与焓、熵的热力学关系,计算出了配合物在80-390 K温度区间内,每隔5 K,相对于298.15 K的摩尔热力学函数(HT,m-H298.15,m)和(ST,m-S298.15,m). 通过热容曲线分析, 计算出了350 K附近转变过程的焓变(ΔtrsHm)和熵变(ΔtrsSm). 用差示扫描量热法(DSC)测定了配合物的热稳定性.

关 键 词:稀土配合物  Ho(NO3)3(C2H5O2N)4·H2O  绝热量热法  热容  热力学函数  热分析  
收稿时间:2013-03-15
修稿时间:2013-06-05

Low-Temperature Heat Capacity and Thermodynamic Functions of Ho(NO3)3(C2H5O2N)4·H2O
GAO Xiao-Han,XU Pei,DUAN Wen-Chao,LÜ,Xue-Chuan,TAN Zhi-Cheng,LU Qiang.Low-Temperature Heat Capacity and Thermodynamic Functions of Ho(NO3)3(C2H5O2N)4·H2O[J].Acta Physico-Chimica Sinica,2013,29(10):2123-2128.
Authors:GAO Xiao-Han  XU Pei  DUAN Wen-Chao    Xue-Chuan  TAN Zhi-Cheng  LU Qiang
Institution:1.School of Chemistry and Material Science, College of Chemistry and Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, Liaoning Province, P. R. China;2.Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, Liaoning Province, P. R. China
Abstract:A complex of a rare-earth metal (Ho) nitrate with glycine (C2H5O2N), Ho(NO3)3(C2H5O2N)4·H2O, was synthesized, and characterized by chemical analysis, elemental analysis, and infrared (IR) spectroscopy. The thermodynamic properties of the complex were also studied. The low-temperature molar heat capacities at constant pressure (Cp,m) of the complex were measured using a high-precision automatic adiabatic calorimeter over the temperature range from80 to 390 K. The experimental molar heat capacities at constant pressure were used to deduce the polynomial equations for the heat capacity as a function of reduced temperature by applying the least-squares method to the two smooth stages of the curve. Based on the thermodynamic relationships among heat capacity, entropy, and enthalpy, the thermodynamic functions (HT,m-H298.15,m) and (ST,m-S298.15,m) were derived from the heat capacity data, with temperature intervals of 5 K. The molar enthalpy and entropy changes of the transition process at about 350 K (ΔtrsHm and ΔtrsSm) were calculated from the heat capacity curve. The thermal stability of the complex was determined using differential scanning calorimetry (DSC).
Keywords:Rare earth complex  3)3(C2H5O2N)4·  H2O'  ')  Ho(NO3)3(C2H5O2N)4·" target="_blank">">Ho(NO3)3(C2H5O2N)4·  H2O  Adiabatic calorimetry  Heat capacity  Thermodynamic function  Thermal analysis
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号