首页 | 本学科首页   官方微博 | 高级检索  
     检索      

用GGA密度泛函及其长程、色散校正方法计算各类氢键的结合能
引用本文:孙涛,王一波.用GGA密度泛函及其长程、色散校正方法计算各类氢键的结合能[J].物理化学学报,2011,27(11):2553-2558.
作者姓名:孙涛  王一波
作者单位:Key Laboratory of Guizhou High Performance Computational Chemistry, Guiyang 550025, P. R. China; Department of Chemistry, Guizhou University, Guiyang 550025, P. R. China
基金项目:国家自然科学基金,贵州大学自然科学青年科研基金
摘    要:应用广义梯度近似(GGA) (PW91和PBE)、含动能密度的广义梯度近似(meta-GGA) (M06-L)、杂化泛函(hyper-GGA)(M06-2X、X3LYP和B3LYP)及其长程校正泛函LC-DFT(CAM-B3LYP、LC-ωPBE和ωB97X)和色散校正密度泛函(DFT-D)(ωB97X-D和B97-D),用多种基函数对15种不同强度的传统氢键和非传统氢键体系的结合能进行了系统的计算与分析.并与高精度的CCSD(T)/aug-cc-pVQZ结果比较发现:在上述各类泛函中,对于氢键结合能的计算M06-2X和ωB97X-D泛函较为精确与可靠,且没有必要使用过大的基函数,6-311++G(2d,2p)或aug-cc-pVDZ水平的基组就已足够,各类泛函所计算结合能的基组重叠误差(BSSE)均较小,除ωB97X和ωB97X-D外,其它9种泛函不经BSSE校正也能得到同样甚至更准确的结果.

关 键 词:密度泛函理论  氢键  分子间相互作用  基函数  基组重叠误差  
收稿时间:2011-05-06
修稿时间:2011-08-19

Calculation of the Binding Energies of Different Types of Hydrogen Bonds Using GGA Density Functional and Its Long-Range, Empirical Dispersion Correction Methods
SUN Tao,WANG Yi-Bo.Calculation of the Binding Energies of Different Types of Hydrogen Bonds Using GGA Density Functional and Its Long-Range, Empirical Dispersion Correction Methods[J].Acta Physico-Chimica Sinica,2011,27(11):2553-2558.
Authors:SUN Tao  WANG Yi-Bo
Institution:Key Laboratory of Guizhou High Performance Computational Chemistry, Guiyang 550025, P. R. China; Department of Chemistry, Guizhou University, Guiyang 550025, P. R. China
Abstract:We investigated eleven exchange-correlation energy density functionals including generalized gradient approximation (GGA) (PBE, PW91), meta-GGA (M06-L), hyper-GGA (M06-2X, B3LYP, X3LYP), LC-DFT methods (CAM-B3LYP, LC-ωPBE, ωB97X), and density functional theory with dispersion corrections (DFT-D) methods (ωB97X-D, B97-D) for their performance in describing systems with conventional and non-conventional hydrogen bonds. After comparing the results using the benchmark CCSD(T)/aug-cc-pVQZ approach we found that the M06-2X and ωB97X-D functionals provided the most accurate and reliable results for the fifteen systems studied in this work with strong, moderate, and weak hydrogen bonds. It is important to employ an appropriate basis set to predict the binding energy of hydrogen bonds for all DFT methods and we found that the basis set of 6-311++G(2d, 2p) or aug-cc-pVDZ is adequate. The effect of the basis set superposition error (BSSE) is relatively small for the DFT methods tested. All the methods except for ωB97X and ωB97X-D were found to produce equally accurate or even more accurate results without BSSE correction.
Keywords:Density functional theory  Hydrogen bond  Intermolecular interaction  Basis set  Basis set superposition error  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号