首页 | 本学科首页   官方微博 | 高级检索  
     检索      

不同条件下离体大鼠肝脏线粒体能量代谢微量热分析
引用本文:袁莲,刘玉娇,何欢,蒋风雷,李会荣,刘义.不同条件下离体大鼠肝脏线粒体能量代谢微量热分析[J].物理化学学报,2018,34(1):73-80.
作者姓名:袁莲  刘玉娇  何欢  蒋风雷  李会荣  刘义
作者单位:1 武汉大学化学与分子科学学院,武汉4300722 武汉东湖学院生命科学与化学学院,武汉430212
基金项目:the National Natural Science Foundation of China(21673166);Natural Science Foundation of Hubei Province, China(2015CFC892)
摘    要:为了探究线粒体的能量代谢过程,本文以离体大鼠肝脏线粒体为模型,利用多通道、高灵敏度的热活性检测仪TAM Ⅲ,实时监测了不同线粒体浓度、不同底物、不同缓冲液、几种呼吸抑制剂以及Ca2+和线粒体渗透转换孔抑制剂CsA存在时线粒体的能量代谢,获得了完整的热功率―时间曲线,并通过计算得到了线粒体能量代谢的热动力学参数。通过分析发现:(1)线粒体浓度越大,代谢越快;(2)直接底物琥珀酸钠使线粒体代谢更快;(3)高浓度Ca2+能够刺激线粒体快速产热,且在长期代谢进程中,线粒体渗透转换孔抑制剂CsA并不能改变Ca2+造成的影响;(4)不同缓冲液对线粒体代谢的影响基于其组分的不同,缓冲液中含有呼吸底物;(5)呼吸抑制剂都能抑制线粒体的能量代谢,尤其是复合物IV的抑制剂NaN3,高浓度下使代谢停止。

关 键 词:线粒体  微量热  代谢速率  呼吸链抑制剂  线粒体渗透转换  
收稿时间:2017-06-13

Microcalorimetric Analysis of Isolated Rat Liver Mitochondrial Metabolism under Different Conditions
Lian YUAN,Yu-Jiao LIU,Huan HE,Feng-Lei JIANG,Hui-Rong LI,Yi LIU.Microcalorimetric Analysis of Isolated Rat Liver Mitochondrial Metabolism under Different Conditions[J].Acta Physico-Chimica Sinica,2018,34(1):73-80.
Authors:Lian YUAN  Yu-Jiao LIU  Huan HE  Feng-Lei JIANG  Hui-Rong LI  Yi LIU
Institution:1. College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China;2. College of Life Science and Chemistry, Wuhan Donghu University, Wuhan 430212, P. R. China
Abstract:Isolated rat liver mitochondria were proposed as a model to monitor real-time heat metabolism.A high-throughput and sensitive thermal activity monitor Ⅲ (TAM Ⅲ) was used to detect the P-t curves of mitochondria under different conditions, including different mitochondrial concentrations, different substrates, different buffers, respiratory inhibitors, Ca2+, and CsA.We determined the thermokinetic parameters through calculation.The results showed that:(1) higher concentration of mitochondria led to faster energetic metabolism; (2) when succinate was the direct respiratory substrate, it promoted mitochondrial metabolism, in contrast to the condition when an indirect substrate, pyruvate, was used; (3) high concentration of Ca2+(2.5 mmol·L-1) stimulated mitochondrial metabolism, however CsA, an inhibitor of mitochondrial permeability transition pores, could not reverse the Ca2+-induced mitochondrial alteration; (4) mitochondria in various buffers displayed different rates of heat metabolism, because of the different composition of the buffers; (5) mitochondrial metabolism was inhibited by respiratory inhibitors, especially NaN3, which is an inhibitor of Complex Ⅳ and which completely stopped the mitochondrial heat release.
Keywords:Mitochondria  Microcalorimetry  Metabolic rate  Respiratory inhibitor  Mitochondrial permeability transition  
本文献已被 CNKI 等数据库收录!
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号