首页 | 本学科首页   官方微博 | 高级检索  
     检索      

金属串配合物[Ni3(L)4(NCS)2](L = dpa-, mpta-, mdpa-, mppa-)结构和磁性的理论研究
引用本文:陈蓉,周沃华,吴子文,许旋,徐志广.金属串配合物[Ni3(L)4(NCS)2](L = dpa-, mpta-, mdpa-, mppa-)结构和磁性的理论研究[J].物理化学学报,2015,31(9):1683-1689.
作者姓名:陈蓉  周沃华  吴子文  许旋  徐志广
作者单位:1 华南师范大学化学与环境学院,广州5100062 教育部环境理论化学重点实验室,广州5100063 广州市能源转化与储能材料重点实验室,广州510006
基金项目:the Natural Science Foundation of Guangdong Province, China(S2012010008763);Ministry of Education andGuangdong Province, China(2010B090400184);Science and Technology Program of Guangzhou City, China(2011J4300063)
摘    要:应用密度泛函理论BP86方法结合自然键轨道分析方法对具有分子导线潜在应用前景的金属串配合物Ni3(L)4(NCS)2](L = dpa- (1), mpta- (2), mdpa- (3), mppa- (4))进行研究,分析了桥联配体L对Ni―Ni相互作用和磁耦合性质的影响.结果得到: (1)配合物的基态均是对应于五重态(HS)的反铁磁(AF)单重态, HS的能量和结构与AF态相近, Ni36+链形成了三中心四电子σ键(σ2σnb1σ*1). (2) dpa-引入甲基成为mdpa-,对Ni―Ni、Ni―N距离影响不大; 3H-吡咯环和噻唑环取代吡啶环后, N1―N2、Ni―Ni距离增大, Ni2―N2键长缩短,但噻唑环的影响较小;故Ni―Ni相互作用强度为13 > 2 > 4. (3)预测了34Jab值为-103和-88 cm-1,随Ni―Ni相互作用增强磁耦合效应增大. Ni―Ni相互作用越大,通过Ni36+链σ型轨道的直接磁耦合越强; Ni2―N2键越强,通过涉及桥联配体的间接磁耦合越强,直接磁耦合比间接磁耦合更强.

关 键 词:金属串配合物  桥联配体  密度泛函理论  磁耦合  分子导线  
收稿时间:2015-02-16

Theoretical Study on the Structures and Magnetic Properties of Metal String Complexes [Ni3(L)4(NCS)2] (L = dpa-, mpta-, mdpa-, mppa-)
Rong. CHEN,Wo-Hua. ZHOU,Zi-Wen. WU,Xuan. XU,Zhi-Guang. XU.Theoretical Study on the Structures and Magnetic Properties of Metal String Complexes [Ni3(L)4(NCS)2] (L = dpa-, mpta-, mdpa-, mppa-)[J].Acta Physico-Chimica Sinica,2015,31(9):1683-1689.
Authors:Rong CHEN  Wo-Hua ZHOU  Zi-Wen WU  Xuan XU  Zhi-Guang XU
Institution:1. School of Chemistry & Environment, South China Normal University, Guangzhou 510006, P. R. China;2. Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, P. R. China;3. Key Laboratory of Materials for Energy Conversion and Storage of Guangzhou, Guangzhou 510006, P. R. China
Abstract:Density functional theory at the BP86 level and natural bond orbital theory were used to investigate the influence of bridging ligands on the Ni―Ni interactions and magnetic coupling properties of metal string complexes Ni3(L)4(NCS)2] (L = 1: dpa- (dipyridylamine), 2: mpta- (4-methylpyridyl-thiazolylamine), 3: mdpa- (4-methyl-dipyridylamine), 4: mppa-(4-methylpyridyl-3H-pyrrolylamine)) with potential applications in molecular wires. The following conclusions can be drawn. (1) The ground states of the complexes are antiferromagnetic (AF) singlet states, which correspond to the quintet state (HS). The energy and structure of HS is similar to AF. There are three-center-four-electron σ bonds (σ2σnb1σ*1) along the Ni36+ chains. (2) The Ni―Ni and Ni―N distances are unaffected by methyl substituents on the pyridine ring of dpa- ligands. However, substitution of the 3H-pyrrole ring or thiazole ring by the pyridine ring in mdpa- lengthens the N1―N2 and Ni―Ni distances but shortens the Ni2―N2 distance. These effects of the thiazole ring are weaker than those of the 3H-pyrrole ring. Therefore, the strength of the Ni―Ni interaction is 13 > 2 > 4. (3) The predicted Jab values of 3 and 4 are -103 and -88 cm-1, respectively. The AF magnetic coupling effects of the complexes increase with increasing Ni―Ni interaction strength: the stronger the Ni―Ni interaction, the greater the direct magnetic coupling in the σ orbitals along the Ni36+ chains. In addition, the stronger the Ni2―N2 interaction, the larger the indirect magnetic coupling involving the bridging ligand. The direct magnetic coupling is stronger than the indirect magnetic coupling.
Keywords:Metal string complex  Bridging ligand  Density functional theory  Magnetic coupling  M olecular wire  
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号