首页 | 本学科首页   官方微博 | 高级检索  
     检索      

正癸烷与二甲苯在超临界压力下的热裂解
引用本文:周灏,毛佳,汪必耀,朱权,王健礼,李象远.正癸烷与二甲苯在超临界压力下的热裂解[J].物理化学学报,2013,29(4):689-694.
作者姓名:周灏  毛佳  汪必耀  朱权  王健礼  李象远
作者单位:1.Colledge of Chemical Engineering, Sichuan University, Chengdu 610065, P.R. China;2.Colledge of Chemistry, Sichuan University, Chengdu 610064, P.R. China
基金项目:国家自然科学基金(91116001/A0204)资助项目~~
摘    要:采用连续流动装置对正癸烷和二甲苯在超临界压力下的热裂解对比研究. 用气相色谱和色质联用仪对其气相产物和液相产物进行分析, 计算气相产物产率和裂解转化率, 并运用计算化学方法获得正癸烷和二甲苯不同化学键的键能, 从实验和理论上分析其裂解反应的难易程度和裂解规律. 实验结果表明, 在4 MPa和650、700、750 ℃条件下, 正癸烷比二甲苯更容易裂解, 正癸烷裂解产物以C1-C3小分子的烃类和氢气为主, 而二甲苯裂解产物主要为乙苯、甲苯和其它芳香类化合物; 键能计算结果表明, 正癸烷碳链骨架的C-C键能和C-H键能均较小, 裂解反应的诱发步骤应该是C-C键断裂, 而二甲苯苯环上C-C和C-H键能均较大, 裂解诱发步骤应该是侧链甲基脱氢反应. 因此正癸烷裂解反应以C-C键断裂和脱氢反应为主, 二甲苯裂解主要发生侧链甲基C-C键断裂和脱氢反应, 而芳环则比较稳定, 理论计算键能分析与裂解实验结果一致.

关 键 词:正癸烷  二甲苯  超临界  热裂解  键能  
收稿时间:2012-11-15
修稿时间:2013-02-06

Pyrolysis of n-Decane and Dimethylbenzene under Supercritical Pressure
ZHOU Hao,MAO Jia,WANG Bi-Yao,ZHU Quan,WANG Jian-Li, LI Xiang-Yuan.Pyrolysis of n-Decane and Dimethylbenzene under Supercritical Pressure[J].Acta Physico-Chimica Sinica,2013,29(4):689-694.
Authors:ZHOU Hao  MAO Jia  WANG Bi-Yao  ZHU Quan  WANG Jian-Li  LI Xiang-Yuan
Institution:1.Colledge of Chemical Engineering, Sichuan University, Chengdu 610065, P.R. China;2.Colledge of Chemistry, Sichuan University, Chengdu 610064, P.R. China
Abstract:The pyrolysis of n-decane and dimethylbenzene under supercritical pressure was studied using a continuous flow reactor. Samples were heated to a temperature of 650, 700, or 750 ℃ under a pressure of 4 MPa without oxygen. n-Decane pyrolyzed more easily than dimethylbenzene. We analyzed gaseous products by online gas chromatography, and liquid products by gas chromatography-mass spectrometry, allowing us to calculate the cracking gas yield and cracking conversion of these systems. A quantum chemistry computation was used to evaluate the binding energies of C-C and C-H bonds in n-decane and dimethylbenzene. Both experimental and theoretical results were also used to analyze the cracking reactivity of these species. Analysis of the components in the products indicated that the main products of n-decane were C1-C3 hydrocarbons and hydrogen, whereas ethylbenzene, toluene and other aromatic compounds were the main products of dimethylbezene after pyrolysis. Binding energy calculations showed that both C-C and C-H bonds in n-decane possessed lower binding energies than those in dimethylbezene, and a C-C bond was the weakest. In dimethylbenzene, a C-H bond in the methyl groups was the weakest, and its binding energy was much smaller than those of the C-C and CH bonds in the benzene ring. Therefore, the main reactions in the cracking process of n-decane are breakage of a C-C bond and dehydrogenation. However, the cracking process in dimethylbenzene mainly involves the fracture and dehydrogenation of methyl groups. The theoretical calculations reasonably explained the experimental phenomena.
Keywords:n-Decane''  '''')  n-Decane" target="_blank">">n-Decane  Dimethylbenzene  Supercritical condition  Pyrolysis  Binding energy
本文献已被 CNKI 等数据库收录!
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号