首页 | 本学科首页   官方微博 | 高级检索  
     检索      

NiS-PdS/CdS光催化剂的水热法合成及其可见光分解水产氢性能
引用本文:林培宾,杨俞,陈威,高寒阳,陈小平,袁坚,上官文峰.NiS-PdS/CdS光催化剂的水热法合成及其可见光分解水产氢性能[J].物理化学学报,2013,29(6):1313-1318.
作者姓名:林培宾  杨俞  陈威  高寒阳  陈小平  袁坚  上官文峰
作者单位:Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
基金项目:国家重点基础研究发展规划项目(973) (2009CB220000);国家高技术研究发展计划项目(863) (2012AA051501);上海市国际合作项目 (12160705700)资助~~
摘    要:为提高太阳能转化效率, 高效响应可见光的光催化剂的研究十分必要. 本研究以硫化镉、氯化钯、醋酸镍和硫脲为原料, 利用水热法制备了NiS-PdS/CdS复合光催化剂. 通过X射线衍射(XRD)、紫外-可见光漫反射光谱(DRS)、透射电子显微镜(TEM)和光致发光(PL)光谱等手段对光催化剂进行了表征, 并在乳酸牺牲剂中对光解水制氢活性进行了测试. 结果表明: 助催化剂NiS 和PdS 能较好地分布在CdS 表面上, 形成共负载的NiS-PdS/CdS 光催化剂, 其可见光下的活性比CdS明显增强, 当NiS 和PdS 负载量分别在1.5%和0.41%(w)时, NiS-PdS/CdS获得最好活性, 最大产氢量达到6556 μmol·h-1, 是CdS活性的7倍, 是NiS/CdS的近3倍, 测得在λ=420 nm时的表观量子效率为47.5%. 助催化剂NiS 和PdS分别起到传递光生电子和光生空穴的作用,两者共负载相比于单独负载, 能使光生载流子的迁移和分离效率更高, 因此提高了光催化产氢活性.

关 键 词:NiS-PdS/CdS  水热法  共负载  光催化  氢能  
收稿时间:2013-01-07
修稿时间:2013-03-14

Hydrothermal Synthesis and Activity of NiS-PdS/CdS Catalysts for Photocatalytic Hydrogen Evolution under Visible Light Irradiation
LIN Pei-Bin,YANG Yu,CHEN Wei,GAO Han-Yang,CHEN Xiao-Ping,YUAN Jian,SHANGGUAN Wen-Feng.Hydrothermal Synthesis and Activity of NiS-PdS/CdS Catalysts for Photocatalytic Hydrogen Evolution under Visible Light Irradiation[J].Acta Physico-Chimica Sinica,2013,29(6):1313-1318.
Authors:LIN Pei-Bin  YANG Yu  CHEN Wei  GAO Han-Yang  CHEN Xiao-Ping  YUAN Jian  SHANGGUAN Wen-Feng
Institution:Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
Abstract:To improve the solar energy transformation efficiency, it is necessary to study the efficiency of photocatalysts under visible light irradiation. In this study, the composite photocatalyst NiS-PdS/CdS has been developed using a hydrothermal method from the raw materials cadmium sulfide, palladium chloride, nickel acetate and thiourea. The characteristics of NiS-PdS/CdS were studied by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy. In addition, the photocatalytic activities for water splitting were tested using lactic acid as the sacrificial reagent. The results showed that NiS and PdS dispersed well on the surface of CdS. The activity of NiS-PdS/CdS was much higher than that of CdS under visible light irradiation. When the loading amount of NiS and PdS reached 1.5% and 0.41% (w), respectively, NiS-PdS/ CdS showed the highest activity. The H2 evolution rate increased up to 6556 μmol·h-1, which was six times higher than that of unloaded CdS and nearly two times higher than that of NiS/CdS. The apparent quantum yield was 47.5% (λ=420 nm). The co-catalysts NiS and PdS prompted the transfer of photogenerated electrons and holes, respectively. Compared with single-loading, co-loading the two co-catalysts could transfer and separate charge carriers more efficiently, resulting in enhancement of the activity for photocatalytic hydrogen production.
Keywords:NiS-PdS/CdS  Hydrothermal method  Co-loading  Photocatalysis  Hydrogen energy
本文献已被 CNKI 等数据库收录!
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号