首页 | 本学科首页   官方微博 | 高级检索  
     检索      

自旋电子学-光催化产氢交叉学科研究中的测试表征技术进展
引用本文:张文妍,高薇,张旭强,李振,吕功煊.自旋电子学-光催化产氢交叉学科研究中的测试表征技术进展[J].分析测试技术与仪器,2017,23(4):219-236.
作者姓名:张文妍  高薇  张旭强  李振  吕功煊
作者单位:1. 中国科学院兰州化学物理研究所羰基合成与选择氧化国家重点实验室,甘肃兰州 730000;中国科学院大学,北京 10080;金陵科技学院,江苏南京 211169;2. 中国科学院兰州化学物理研究所羰基合成与选择氧化国家重点实验室,甘肃兰州 730000;中国科学院大学,北京 10080;3. 中国科学院兰州化学物理研究所羰基合成与选择氧化国家重点实验室,甘肃兰州,730000
基金项目:The National Natural Science Foundation of China (Grant Nos. 21433007 and 21673262) and the 973 Program of Department of Sciencesand Technology China (Grant No. 2013CB632404)
摘    要:清洁能源的研究和开发为解决化石燃料的日益枯竭问题带来了希望.氢能燃烧热值高,产物零污染,是理想的清洁能源.利用太阳能,通过光催化反应从水中制取氢气,是一条极有发展前景的制氢途径.然而,太阳能光催化制氢的发展受到许多因素的限制,特别是光电子传输过程中的电子-空穴复合及能量损失导致的电子输运效率低以及高的产氢产氧过电位导致水分解过程的势垒增大.自旋电子学的发展,为太阳能光催化制氢中的这些问题提供了解决之道.通过将自旋电子学的思路及原理应用于太阳能光催化制氢,借助自旋输运及电子隧穿可有效提高电子的输运效率,光电子的自旋极化还可降低产氢产氧过电位并抑制副产物的生成.测试表征技术的发展为揭示自旋电子学-太阳能光催化制氢交叉科学的内秉机理做出了重要贡献.然而,目前尚无相关文籍对此类测试表征技术的发展进行总结和评述.考虑到这些测试表征技术在自旋电子学-太阳能光催化制氢交叉科学研究中的重要作用,对它们进行归纳和总结,评述其发展面临的问题与挑战,探索并合理预测其未来的发展方向.

关 键 词:光催化  产氢  表征  自旋检测  自旋增益的光催化产氢
收稿时间:2017/11/20 0:00:00
修稿时间:2017/12/4 0:00:00

Progress in Characterization Techniques in Spintronic Enhanced Photocatalytic Hydrogen Evolution
ZHANG Wen-yan,GAO Wei,ZHANG Xu-qiang,LI Zhen and LYU Gong-xuan.Progress in Characterization Techniques in Spintronic Enhanced Photocatalytic Hydrogen Evolution[J].Analysis and Testing Technology and Instruments,2017,23(4):219-236.
Authors:ZHANG Wen-yan  GAO Wei  ZHANG Xu-qiang  LI Zhen and LYU Gong-xuan
Institution:State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000, China;University of Chinese Academy of Science, Beijing 10080, China;College of Material Engineering, Jinling Institute of technology, Nanjing 211169, China,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000, China;University of Chinese Academy of Science, Beijing 10080, China,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000, China,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000, China;University of Chinese Academy of Science, Beijing 10080, China and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000, China
Abstract:In recent years, the fossil fuel crisis has triggered the worldwide demand for new clean energy. Hydrogen is a desirable candidate due to its high combustive enthalpy and zero-pollution characteristics. A promising approach for the hydrogen production is splitting H2 from water by solar driven photo-catalytic hydrogen evolution reaction. The development of photo-catalytic HER is inhibited by many factors:especiallythe the large energy loss and the electron-hole recombination during electron transportation, and high over-potential of proton reduction and water oxidation.Spintronic science sheds new lights on solving these obstacles by triggering the high efficient spin transfer and electron tunneling, as well aselectrons spin filtering to decrease the over-potential of the reaction and suppress the yield of by-products.The progresses in characterization techniques have contributed greatly to the unveiling of the scientific "secrets" in spintronic enhanced HER research. Yet,few work hasbeen carried out to sum up the setechniques and to analyze the potential challenges that inhibit their future development. Given that, this review focuses on these topics and provides an expectation for its development trends.
Keywords:photocatalytic  hydrogen evolution  characterization  spin detection  spintronics enhanced photocatalytic
本文献已被 万方数据 等数据库收录!
点击此处可从《分析测试技术与仪器》浏览原始摘要信息
点击此处可从《分析测试技术与仪器》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号