首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modelling of a tubular solid oxide fuel cell with different designs of indirect internal reformer
Institution:1. Department of Chemical Engineering, Mahidol University, Nakorn Pathom 73170, Thailand;2. The Joint Graduate School of Energy and Environment, King Mongkut''s University of Technology Thonburi, Bangkok 10140, Thailand;3. Chemical Process Engineering, The Sirindhorn Internation Thai German Graduate School of Engineering, King Mongkut''s University of Technology North Bangkok, Bangkok 10800, Thailand
Abstract:The cell performance and temperature gradient of a tubular solid oxide fuel cell with indirect internal reformer (IIR-SOFC) fuelled by natural gas, containing a typical catalytic packed-bed reformer, a catalytic coated wall reformer, a catalytic annular reformer, and a novel catalytic annular-coated wall reformer were investigated with an aim to determine the most efficient internal reformer system. Among the four reformer designs, IIR-SOFC containing an annular-coated wall reformer exhibited the highest performance in terms of cell power density (0.67 W·cm−2) and electrical efficiency (68%) with an acceptable temperature gradient and a moderate pressure drop across the reformer (3.53 × 10−5 kPa). IIR-SOFC with an annular-coated wall reformer was then studied over a range of operating conditions: inlet fuel temperature, operating pressure, steam to carbon (S : C) ratio, gas flow pattern (co-flow and counter-flow pattern), and natural gas compositions. The simulation results showed that the temperature gradient across the reformer could not be decreased using a lower fuel inlet temperature (1223 K–1173 K) and both the power density and electrical efficiency of the cell also decreased by lowering fuel inlet temperature. Operating in higher pressure mode (1–10 bar) improved the temperature gradient and cell performance. Increasing the S : C ratio from 2 : 1 to 4 : 1 could decrease the temperature drop across the reformer but also decrease the cell performance. The average temperature gradient was higher and smoother in IIR-SOFC under a co-flow pattern than that under a counter-flow pattern, leading to lower overpotential and higher cell performance. Natural gas compositions significantly affected the cell performance and temperature gradient. Natural gas containing lower methane content provided smoother temperature gradient in the system but showed lower power density and electrical efficiency.
Keywords:indirect internal reforming  solid oxide fuel cell  annular-coated wall reformer  packed-bed reformer  catalytic coated wall reformer  catalytic annular reformer
本文献已被 CNKI ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号