首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Interfacial chemistry ofγ-glutamic acid-derived block polymer binder directing the interfacial compatibility of high voltage LiNi0.5Mn1.5O4 electrode
作者姓名:Yue Ma  Chengdong Wang  Jun Ma  Gaojie Xu  Zheng Chen  Xiaofan Du  Shu Zhang  Xinhong Zhou  Guanglei Cui  Liquan Chen
作者单位:Qingdao Industrial Energy Storage Research Institute;College of Chemistry and Molecular Engineering;Key Laboratory for Renewable Energy
基金项目:the National Key R&D Program of China(2018YFB0104300);the Science Foundation for the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA22010600);the Distinguished Young Scholars of China(51625204);the National Natural Science Foundation of China(U1706229,51803230,21975274);the Key Scientific and Technological Innovation Project of Shandong(2017CXZC0505)。
摘    要:LiNi0.5Mn1.5O4(LNMO)spinel is one of the most promising high voltage cathode candidates for lithium ion batteries(LIBs).However,owing to the instability for organic electrolytes at 5V high voltage,it exhibits continuous oxidation,leading to the formation of unstable interface and the notorious dissolution of transition metal,which prevents the successful commercialization of LNMO.Herein,on the basis of energy level simulation,we present a high voltage resistant binder shielding strategy to address the challenging interfacial issue of LiNi0.5Mn1.5O4cathode.Our strategy is to design a novel poly(γ-glutamic acid)-c-1H,1H,9H,9H-perfluoro-1,9-nonanediol(γ-PGFO)binder with superior transition metal chelating effect and well-matched energy level to guarantee fantastic interfacial compatibility.It is demonstrated that the dissolution of transition metal is significantly suppressed in the presence ofγ-PGFO binder,which excels in the literature.It is also noted that intramolecular hydrogen binding of the well-designed binder can generate powerful facial-contact binding,which is significant for a promising binder.By encapsulating this binder inside the cathode matrix,the Li Ni0.5Mn1.5O4electrode exhibits a capacity of 105.8 m Ah g-1after 500cycles at 1 C with a capacity retention of 88.2%,which is significantly superior to that of polyvinylidene fluoride(PVDF)/Li Ni0.5Mn1.5O4electrode(a capacity of 82.9 m Ah g-1and a capacity retention of 63.4%).The overall Coulombic efficiency ofγ-PGFO/Li Ni0.5Mn1.5O4electrode is prominently improved to be 99.1%,compared with 95.5%of PVDF counterpart.The presented results demonstrate a promising strategy of amino acid-based binder with strong transition metal chelating capability for boosting the rapid development of high voltage lithium ion battery.

关 键 词:LiNi0.5Mn1.5O4  cathode  amino  acid  binder  high  voltage  interfacial  regulation
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号