首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Over 18% binary organic solar cells enabled by isomerization of non-fullerene acceptors with alkylthiophene side chains
Authors:Shang  Ao  Luo  Siwei  Zhang  Jianquan  Zhao  Heng  Xia  Xinxin  Pan  Mingao  Li  Chao  Chen  Yuzhong  Yi  Jicheng  Lu  Xinhui  Ma  Wei  Yan  He  Hu  Huawei
Institution:1.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
;2.Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
;3.State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049, China
;4.Department of Physics, Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
;5.Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
;
Abstract:

Side-chain engineering has been demonstrated as an effective method for fine-tuning the optical, electrical, and morphological properties of organic semiconductors toward efficient organic solar cells (OSCs). In this work, three isomeric non-fullerene small molecule acceptors (SMAs), named BTP-4F-T2C8, BTP-4F-T2EH and BTP-4F-T3EH, with linear and branched alkyl chains substituted on the α or β positions of thiophene as the side chains, were synthesized and systematically investigated. The results demonstrate that the size and substitution position of alkyl side chains can greatly affect the electronic properties, molecular packing as well as crystallinity of the SMAs. After blending with donor polymer D18-Cl, the prominent device performance of 18.25% was achieved by the BTP-4F-T3EH-based solar cells, which is higher than those of the BTP-4F-T2EH-based (17.41%) and BTP-4F-T2C8-based (15.92%) ones. The enhanced performance of the BTP-4F-T3EH-based devices is attributed to its stronger crystallinity, higher electron mobility, suppressed biomolecular recombination, and the appropriate intermolecular interaction with the donor polymer. This work reveals that the side chain isomerization strategy can be a practical way in tuning the molecular packing and blend morphology for improving the performance of organic solar cells.

 loading=
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号