首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cluster and periodic DFT calculations: the adsorption of atomic nitrogen on M(111) (M = Cu, Ag, Au) surfaces
Authors:Wang Gui-Chang  Jiang Ling  Pang Xian-Yong  Nakamura Junji
Institution:Department of Chemistry, Nankai University, Tianjin, 300071, PR China.
Abstract:First-principle density functional calculations with cluster and slab models have been performed to investigate adsorption and thermally activated atomic nitrogen on M(111) (M = Cu, Ag, Au) surfaces. Optimized results indicate that the basis set of the N atom has a distinct effect on the adsorption energy but an indistinct one on the equilibrium distance. For the N/M(111) adsorption systems studied here, the threefold face centered cubic (fcc) hollow site is found to be the most stable adsorption site. The reason for the fcc site is that the perfected adsorption site has been explained by the density of states (DOS) analysis, that is, that N(2p) has the smallest DOS population near the Fermi level on the fcc site as compared with other adsorption sites. The variations of the adsorption energy as a function of adsorption site are similar and in the following order of N-M(111) binding strengths on a given site: Cu(111) > Ag(111) > Au(111). It is found that the N atom forms essentially an ionic bond for the most stable site. Large contributions between the M(ns) and N(2p) orbitals (n = 4, 5, and 6 for Cu, Ag, and Au, respectively) are found for the cluster model at the B3LYP/LANL2DZ-6-31G(d,p) level and also found in the slab DFT-GGA calculation results, which are the main characteristics of M-N bonds. At last, the dissociation of N2 on Cu(111) and Au(111) has also been obtained in this work, and the results showed that the dissociation of N2 on Cu(111) is more active than that on the Au(111) surface.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号