首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Homo-polymerization of alpha-olefins and co-polymerization of higher alpha-olefins with ethylene in the presence of CpTiCl2(OC6H4X-p)/MAO catalysts (X = CH3, Cl)
Authors:Skupinski W  Nicinski K  Jamanek D  Wieczorek Z
Institution:Industrial Chemistry Research Institute, Department of Engineering Plastics and Special Polymers, Group of Catalytic Polymerization, Rydygiera 8, 01-793 Warsaw, Poland. wincenty.skupinski@ichp.pl
Abstract:Cyclopentadienyl-titanium complexes containing -OC6H4X ligands (X = Cl,CH3) activated with methylaluminoxane (MAO) were used in the homo-polymerization of ethylene, propylene, 1-butene, 1-pentene, 1-butene, and 1-hexene, and also in co-polymerization of ethylene with the alpha-olefins mentioned. The -X substituents exhibit different electron donor-acceptor properties, which is described by Hammett's factor (sigma).The chlorine atom is electron acceptor, while the methyl group is electron donor. These catalysts allow the preparation of polyethylene in a good yield. Propylene in the presence of the catalysts mentioned dimerizes and oligomerizes to trimers and tetramers at 25 degrees C under normal pressure. If the propylene pressure was increased to 7 atmospheres,CpTiCl2(OC6H4CH3)/MAO catalyst at 25 degrees gave mixtures with different contents of propylene dimers, trimers and tetramers. At 70 degrees C we obtained only propylene trimer.Using the catalysts with a -OC(6)H(4)Cl ligand we obtained atactic polymers with M(w) 182,000 g/mol (at 25 degrees C) and 100,000 g/mol (at 70 degrees C). The superior activity of the CpTiCl2(OC6H4Cl)/MAO catalyst used in polymerization of propylene prompted us to check its activity in polymerization of higher alpha-olefins (1-butene, 1-pentene, 1-hexene)and in co-polymerization of these olefins with ethylene. However, when homo-polymerization was carried out in the presence of this catalyst no polymers were obtained. Gas chromatography analysis revealed the presence of dimers. The activity of the CpTiCl2(OC6H4Cl)/MAO catalyst in the co-polymerization of ethylene with higher alpha-olefins is limited by the length of the co-monomer carbon chain. Hence, the highest catalyst activities were observed in co-polymerization of ethylene with propylene (here a lower pressure of the reagents and shorter reaction time were applied to obtain catalytic activity similar to that for other co-monomers). For other co-monomers the activity of the catalyst decreases as follows: propylene >1-butene > 1-pentene > 1-hexene. In the case of co-polymerization of ethylene with propylene, besides an increase in catalytic activity, an increase in the average molecular weight M(w) of the polymer was observed. Other co- monomers used in this study caused a decrease of molecular weight. A significant increase in molecular weight distribution (M(w)/M(n)) evidences a great variety of polymer chains formed during the reaction.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号