首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effective Permittivity of a Multi-Phase System: Nanoparticle-Doped Polymer-Dispersed Liquid Crystal Films
Authors:Doina Manaila-Maximean
Institution:Department of Physics, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania;
Abstract:This paper studies the effective dielectric properties of heterogeneous materials of the type particle inclusions in a host medium, using the Maxwell Garnet and the Bruggeman theory. The results of the theories are applied at polymer-dispersed liquid crystal (PDLC) films, nanoparticles (NP)-doped LCs, and developed for NP-doped PDLC films. The effective permittivity of the composite was simulated at sufficiently high frequency, where the permittivity is constant, obtaining results on its dependency on the constituents’ permittivity and concentrations. The two models are compared and discussed. The method used for simulating the doped PDLC retains its general character and can be applied for other similar multiphase composites. The methods can be used to calculate the effective permittivity of a LC composite, or, in the case of a composite in which one of the phases has an unknown permittivity, to extract it from the measured composite permittivity. The obtained data are necessary in the design of the electrical circuits.
Keywords:effective permittivity  liquid crystal  polymer-dispersed liquid crystal  nanoparticle
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号