首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An evolution-inspired strategy to design disulfide-rich peptides tolerant to extensive sequence manipulation
Authors:Jun Zha  Jinjing Li  Shihui Fan  Zengping Duan  Yibing Zhao  Chuanliu Wu
Institution:Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005 P.R. China.; College of Continuing Education, Guizhou Minzu University, Guiyang 550025 China
Abstract:Natural disulfide-rich peptides (DRPs) are valuable scaffolds for the development of new bioactive molecules and therapeutics. However, there are only a limited number of topologically distinct DRP folds in nature, and most of them suffer from the problem of in vitro oxidative folding. Thus, strategies to design DRPs with new constrained topologies beyond the scope of natural folds are desired. Herein we report a general evolution-inspired strategy to design new DRPs with diverse disulfide frameworks, which relies on the incorporation of two cysteine residues and a random peptide sequence into a precursor disulfide-stabilized fold. These peptides can spontaneously fold in redox buffers to the expected tricyclic topologies with high yields. Moreover, we demonstrated that these DRPs can be used as templates for the construction of phage-displayed peptide libraries, enabling the discovery of new DRP ligands from fully randomized sequences. This study thus paves the way for the development of new DRP ligands and therapeutics with structures not derived from natural DRPs.

A general method was developed to design multicyclic peptides with diverse disulfide frameworks amenable to random peptide library design, enabling the development of new disulfide-rich peptide ligands and therapeutics with structures not derived from natural peptides.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号