首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Two-dimensional connective nanostructures of electrodeposited Zn on Au (111) induced by spinodal decomposition
Authors:Dogel J  Tsekov R  Freyland W
Institution:Institute of Physical Chemistry, University of Karlsruhe (TH), D-76128 Karlsruhe, Germany.
Abstract:Phase formation of surface alloying by spinodal decomposition has been studied at an electrified interface. For this aim Zn was electrodeposited on Au(111) from the ionic liquid AlCl(3)-MBIC (58:42) containing 1 mM Zn(II) at different potentials in the underpotential range corresponding to submonolayer up to monolayer coverage. Structure evolution was observed by in situ electrochemical scanning tunneling microscopy (STM) at different times after starting the deposition via potential jumps and at temperatures of 298 and 323 K. Spinodal or labyrinth two-dimensional structures predominate at middle coverage, both in deposition and in dissolution experiments. They are characterized by a length scale of typically 5 nm which has been determined from the power spectral density of STM images. Structure formation and surface alloying are governed by slow kinetics with a rate constant k with activation energy of 120 meV and preexponential factor of 0.17 s(-1). The evolution of the structural features is described by a continuum model and is found to be in good agreement with the STM observations. From the experimental and model calculation results we conclude that the two-dimensional phase formation in the Zn on Au(111) system is dominated by surface alloying. The phase separation of a Zn-rich and a Zn-Au alloy phase is governed by two-dimensional spinodal decomposition.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号