首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Pyrene: hydrogenation, hydrogen evolution, and π-band model
Authors:Rasmussen Jakob Arendt  Henkelman Graeme  Hammer Bjørk
Institution:Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, Ny Munkegade, Building 1520, Aarhus University, DK-8000 Aarhus C, Denmark.
Abstract:We present a theoretical investigation of the hydrogenation of pyrene and of the subsequent molecular hydrogen evolution. Using density functional theory (DFT) at the GGA-PBE level, the chemical binding of atomic hydrogen to pyrene is found to be exothermic by up to 1.6 eV with a strong site dependence. The edge C atoms are found most reactive. The barrier for the formation of the hydrogen-pyrene bond is small, down to 0.06 eV. A second hydrogen binds barrierless at many sites. The most stable structure of dihydrogenpyrene is more stable by 0.64 eV than pyrene plus a molecular hydrogen molecule and a large barrier of 3.7 eV for the molecular hydrogen evolution is found. Using a simple tight-binding model we demonstrate that the projected density of π-states can be used to predict the most stable binding sites for hydrogen atoms and the model is used to investigate the most favorable binding sites on more hydrogenated pyrene molecules and on coronene. Some of the DFT calculations were complemented with hybrid-DFT (PBE0) showing a general agreement between the DFT and hybrid-DFT results.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号