首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ab initio multireference configuration-interaction study of hydrogen molecule activation by Cs-promoted Pt clusters
Authors:Benitez J I  Castillo S  Poulain E  Bertin V
Institution:Area de Fisica Atómica y Molecular Aplicada, CBI, UAM-Azcapotzalco, Avonida San Pablo No. 180, Colonia Reynosa-Tamaulipas, Azcapotzalco, Mexico Distrito Federal, 02200 Mexico.
Abstract:The adsorption of the H2 molecule on CsnPt(5-n) bcc (111) clusters for Cs/Pt rates of 20%, 40%, and 80% is studied using ab initio multiconfigurational self-consistent field plus multireference configuration-interaction variational and perturbative calculations. The H2 interaction with the clusters is studied in ground and excited states with geometry optimization, where the hydrogen adsorption takes place by a Pt atom. These calculations are compared with those of H2 adsorption on Pt4. The most stable configurations of Cs/Pt4 and Cs2Pt3 clusters (Cs/Pt rates of 20% and 40%) are a doublet and a closed-shell singlet, respectively. Both clusters capture and activate the hydrogen molecule and their behaviors resemble Pt4. The H2 capture distances are, respectively, similar and smaller than Pt4 capture distances, while the H-H bond dissociation distances are similar and bigger than those of Pt4; however, none of them presents activation barriers. The most stable Cs4Pt cluster (Cs/Pt rate of 80%) is also a closed-shell singlet; it also captures and activates the hydrogen molecule and shows a different behavior as compared with Cs/Pt4, Cs2Pt3, and Pt4 clusters. The capture distance is quite smaller and is obtained after surmounting an activation barrier. For all clusters studied here, no hydrogen absorption was observed, only the adsorption of H2.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号