首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Optimal conditions for alkaline detoxification of dilute-acid lignocellulose hydrolysates
Authors:Björn Alriksson  Anders Sjöde  Nils-Olof Nilvebrant  Leif J Jönsson
Institution:(1) Biochemistry, Division for Chemistry, Karlstad University, SE-651 88, Karlstad, Sweden;(2) STFI-Packforsk, SE-11486, PO Box 5604, Stockholm, Sweden
Abstract:Alkaline detoxification strongly improves the fermentability of dilute-acid hydrolysates in the production of bioethanol from lignocellulose with Saccharomyces cerevisiae. New experiments were performed with NH4OH and NaOH to define optimal conditions for detoxification and make a comparison with Ca(OH)2 treatment feasible. As too harsh conditions lead to sugar degradation, the detoxification treatments were evaluated through the balanced ethanol yield, which takes both the ethanol production and the loss of fermentable sugars into account. The optimization treatments were performed as factorial experiments with 3-h duration and varying pH and temperature. Optimal conditions were found roughly in an area around pH 9.0/60°C for NH4OH treatment and in a narrow area stretching from pH 9.0/80°C to pH 12.0/30°C for NaOH treatment. By optimizing treatment with NH4OH, NaOH, and Ca(OH)2, it was possible to find conditions that resulted in a fermentability that was equal or better than that of a reference fermentation of a synthetic sugar solution without inhibitors, regardless of the type of alkali used. The considerable difference in the amount of precipitate generated after treatment with different types of alkali appears critical for industrial implementation.
Keywords:Ethanol  lignocellulose  detoxification  alkali  inhibitor
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号