首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ultra-thin-layer agarose gel electrophoresis II. Separation of DNA fragments on composite agarose-linear polymer matrices
Authors:Guttman A  Lengyel T  Szoke M  Sasvari-Szekely M
Institution:Genetic BioSystems, Inc., San Diego, CA 92121, USA. aguttman@genbiosys.com
Abstract:The effect of hydrophilic linear polymer additives (non-cross-linked polyacrylamide, hydroxyethyl cellulose and polyethylene oxide) on the migration behavior of double stranded DNA molecules, ranging from 200-1000 base pairs, were studied in ultra-thin-layer agarose gel electrophoresis. The detection sensitivity was found to be less than 0.1 ng/band using To-Pro-3 fluorophore labeling and fiber optic bundle-based scanning detection system with a 640 nm red diode laser. Among the various polymers investigated, addition of linear polyacrylamide resulted in the best separation performance (steepest Ferguson plots), while composite gels with hydroxyethylcellulose and polyethylene oxide still exhibited adequate resolving power. Using the composite matrices of 1% agarose-linear polyacrylamide (0.5-3%), 1% agarose-hydroxyethylcellulose (0.2-1%) and 1% agarose-polyethylene oxide (0.2-1%), the mechanism of the separation was found to be in the Ogston sieving regime. Activation energy curves were also plotted based on the slopes of the Arrhenius plots of the various composite matrices, and exhibited decreasing characteristics for the agarose-linear polyacrylamide composite matrix and increasing characteristics for the agarose-hydroxyethylcellulose and agarose-polyethylene oxide composite matrices.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号