首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis of Novel Triazole Incorporated Thiazolone Motifs Having Promising Antityrosinase Activity through Green Nanocatalyst CuI-Fe3O4@SiO2 (TMS-EDTA)
Authors:Mahdieh Darroudi  Sara Ranjbar  Mohammad Esfandiar  Mahsima Khoshneviszadeh  Mahshid Hamzehloueian  Mehdi Khoshneviszadeh  Yaghoub Sarrafi
Institution:1. Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416 Iran;2. Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran;3. Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran;4. Department of Chemistry, Jouybar Branch, Islamic Azad University, Jouybar, Iran
Abstract:In the present work, novel 5-((1-benzyl-1,2,3-triazol-4-yl)methoxybenzylidene)-2-(arylamino)thiazol-4-one thiazolone incorporated triazole derivatives have been designed as tyrosinase inhibitors. The compounds were synthesized through click reaction in good yield. Moreover, the antityrosinas activity of the synthesized derivatives was evaluated. In the search for establishing a click copper-catalyzed azide/alkyne cycloaddition (CuAAC) reaction under strict conditions, in terms of a novel air-stable, a recyclable and efficient magnetic catalyst was planned for new triazole derivatives as a well-organized copper iodide supported on the functionalized Fe3O4@SiO2 core-shell (CuI/Fe3O4@SiO2(TMS-EDTA) nanoparticles). The engineered nanocatalyst synthesized for the first time and characterized by different methods, including FT-IR spectroscopy, XRD, FESEM, EDX, TEM, TGA, and BET analysis. The excellent catalytic performance in ethanol with high surface area (351.7 m2g−1) and short reaction time for diverse functional groups (120–200 min), no use of toxic solvents, reusability of the catalyst, and using eco-friendly conditions are the advantageous of this work. Moreover,the nanocatalyst can be used at least five times without any significant decrease in the yield of the reaction. The thiazolidine-triazole derivatives 9a , 9c , 9e , and 9 g showed promising tyrosinase inhibitory activity with IC50 values in the range of 5.90–9.81 μM. The compounds were found to be considerably more potent tyrosinase inhibitors than the reference inhibitor kojic acid (IC50 = 18.36 μM).
Keywords:click reaction  magnetic nanoparticle catalyst  novel Thiazolone-triazole  Tyrosinase inhibitor
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号