首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Regioselective oxidative polymerization of 1,5-dihydroxynaphthalene catalyzed by bilirubin oxidase in a water–organic solvent mixed solution
Authors:Lili Wang  Eiry Kobatake  Yoshihito Ikariyama  Masuo Aizawa
Abstract:Bilirubin oxidase (EC1.11.1.7) was used to catalyze the oxidative polymerization of 1,5-dihydroxynaphthalene to its polymer in a mixed solvent composed of dioxane, ethyl acetate, and acetate buffer. In an aqueous solution, the enzymatic oxidative polymerization hardly occurred and resulted in negligible yield mainly due to the poor solubility of 1,5-dihydroxynaphthalene. In the mixed solvent the conversion proceeded with a yield of ca. 70%. The polymer yield was studied with respect to reaction time and solvent components. Elemental analysis, UV-visible, fluorescent, and FT-IR spectroscopic analyses, proton NMR and electrochemical studies, and solubility in various organic solvents revealed that 1,5-dihydroxynaphthalene is polymerized by the C? C coupling. The molecular weight of the polymeric products solubilized with DMF varied from low molecular weight product to high molecular weight polymer. From the chromatographic studies, the organic solvent–insoluble residue was suggested to be highly polymerized material. Based on these findings a possible mechanism for enzymatic polymerization of 1,5-dihydroxynaphthalene is presented: less stable intermediates produced enzymatically from 1,5-dihydroxynaphthalene undergo coupling and polymerization to ortho-1,5-dihydroxynaphthalene polymer, thereby resulting in a regioselective polymerization of 1,5-dihydroxynaphthalene. © 1993 John Wiley & Sons, Inc.
Keywords:bilirubin oxidase  1  5-dihydroxynaphthalene  enzymatic polymerization  poly(1  5-dihydroxynaphthalene)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号