首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Preparation of solid alkaline fuel cell binders based on fluorinated poly(diallyldimethylammonium chloride)s [poly(DADMAC)] or poly(chlorotrifluoroethylene‐co‐DADMAC) copolymers
Authors:David Valade  Frédéric Boschet  Stéphanie Roualdès  Bruno Ameduri
Institution:1. Institut Charles Gerhardt, UMR CNRS 5253, Ingénierie et Architectures Macromoléculaires, Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue Ecole Normale, 34296 Montpellier, France;2. Institut Européen des Membranes, ENSCM, CNRS, Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier, France
Abstract:A membrane or an electrode binder to be used in a solid alkaline fuel cell (SAFC) needs to (i) be insoluble in both aqueous solutions and the required fuels, and (ii) exhibit an hydroxide ion conductivity. To achieve these goals, two pathways were employed: (i) one consists of the radical copolymerization of diallyldimethylammonium chloride (DADMAC) with chlorotrifluoroethylene (CTFE) while (ii) the other one is based on the counter‐ion exchange of a poly(DADMAC) by fluorinated anions. First, the radical copolymerization of CTFE with DADMAC under various experimental conditions was achieved in yields up to 85%, and DADMAC percentages in the copolymers were higher than those in the feed compositions. To obtain insoluble copolymers, high CTFE feed contents (>70 mol %) were required. The other route consisting in the partial replacement of the Cl? counter‐ions in the water‐soluble poly(DADMAC) by bistrifluoromethanesulfonimide (TFSI?) did confer the starting material insolubility in water while maintaining its conductivity. When the fluorinated poly(DADMAC) was obtained from concentrated solutions of fluorinated surfactant, it was observed that the amount of counter‐ions exchanged was difficult to control, which limits optimization. Nevertheless, under diluted conditions, membranes with ion exchange capacity up to 0.7 meq g?1, and conductivities close to 1 mS cm?1 were obtained. Although their conductivities were low, these membranes fulfill the requirements for a SAFC membrane in terms of solubility in DMSO, water insolubility, and thermal stability (Td,10% > 320 °C). When used in a fuel cell, as a binder in the membrane‐electrode assembly (MEA), significant improvements were noted (+50% of the open circuit voltage, +580% in current density, and +540% in accessible power). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2043–2058, 2009
Keywords:chlorotrifluoroethylene  diallyldimethylammonium chloride  electrochemical properties  fluoropolymer  membrane  radical copolymerization  solid alkaline fuel cell  thermal properties
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号