首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Crosslinking network of bio‐based bis‐functional epoxides derived from trans‐limonene oxide
Authors:Hisatoyo Morinaga  Natsumi Ogawa  Mayu Sakamoto  Hiroshi Morikawa
Abstract:The thiol‐ene reaction between trans‐limonene oxide (trans‐LO) and ethane‐1,2‐dithiol in the presence of triethylborane affords a bio‐based bis‐functional epoxide (bis‐trans‐LO). The crosslinking reaction of bis‐trans‐LO with branched polyethyleneimine (BPEI; Mn = 600; BPEI600) at a feed ratio of bis‐trans‐LO/BPEI600 = 57/43 (wt/wt) yields the corresponding network polymer with Td10 (10% thermal decomposition temperature) of 304.7 °C in 98% yield. In contrast, negligible amounts of network polymer are obtained by the reaction of bis‐LO (bis‐functional epoxide derived from cis and trans‐LO) and BPEI600 regardless of the feed ratio. The mechanical strengths as measured by direct tensile tests of the network polymers derived from bis‐trans‐LO and BPEI600,1800 (Mn = 600 and 1800) were approximately 16 and 11 times higher than that of bis‐LO and BPEI1800, respectively. The tensile shear strengths of the metal‐to‐metal adhesive bonds induced by bis‐trans‐LO and BPEI600,1800 were 9.5 and 14.1 MPa, respectively. DMA revealed that the storage modulus of the network polymer derived from bis‐trans‐LO and BPEI1800 in the rubber region was higher than that of the material prepared from bis‐LO and BPEI1800, indicating higher crosslink density of the bis‐trans‐LO/BPEI1800 system. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2466–2473
Keywords:bio‐based polymers  crosslinking reaction  epoxides  limonene oxide  network polymers
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号