首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Environmental fate processes and biochemical transformations of chiral emerging organic pollutants
Authors:Charles S Wong
Institution:(1) Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, AB T6G 2G2, Canada
Abstract:This review highlights the analytical chemistry, environmental occurrence, and environmental fate of individual stereoisomers of chiral emerging pollutants, which are modern current-use chemicals of growing environmental concern due to their presence in the environment and potential for deleterious effects. Comparatively little is known about individual stereoisomers of pollutants, which can have differential toxicological effects and can be tracers of biochemical weathering in the environment. Stereoisomers are resolved by gas chromatography (GC), high-performance liquid chromatography (HPLC), and capillary electrophoresis (CE). Separation techniques in environmental analysis are typically coupled to mass spectrometry (MS) and tandem mass spectrometry (MS/MS), as these provide the sensitivity and selectivity needed. The enantiomer composition of phenoxyalkanoic and acetamide herbicides, organophosphorus and pyrethroid pesticides, chiral polychlorinated biphenyl metabolites, synthetic musks, hexabromocyclododecane, and pharmaceuticals in the environment show species-dependent enantioselectivity from biotransformation and other biologically mediated processes affecting enantiomers differentially. These enantiomer compositions are useful in detecting biologically mediated environmental reactions, apportioning sources of pollutants, and gaining insight into the biochemical fate of chiral pollutants in the environment, which are needed for accurate risk assessment of such chemicals.
Keywords:Chiral pollutants  Environmental chemistry  Biotransformation  Source apportionment
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号