首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structure and growth of self-assembling monolayers
Authors:Frank Schreiber  
Institution:

a Institut für Theoretische und Angewandte Physik, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany

b Max-Planck-Institut für Metallforschung, Heisenbergstr. 1, 70569 Stuttgart, Germany

Abstract:The structural phases and the growth of self-assembled monolayers (SAMs) are reviewed from a surface science perspective, with emphasis on simple model systems. The concept of self-assembly is explained, and different self-assembling materials are briefly discussed. A summary of the techniques used for the study of SAMs is given. Different general scenarios for structures obtained by self-assembly are described. Thiols on Au(1 1 1) surfaces are used as an archetypal system to investigate in detail the structural phase diagram as a function of temperature and coverage, the specific structural features on a molecular level, and the effect of changes of the molecular backbone and the end group on the structure of the SAM. Temperature effects including phase transitions are discussed. Concepts for the preparation of more complex structures such as multi-component SAMs, laterally structured SAMs, and heterostructures, also with inorganic materials, are outlined. The growth and ways to control it are discussed in detail. Solution and gas phase deposition and the impact of various parameters such as temperature, concentration (in solution) or partial pressure (in the gas phase) are described. The kinetics and the energetics of self-assembly are analyzed. Several more complex issues of the film formation process including non-equilibrium issues are discussed. Some general conclusions are drawn concerning the impact of various molecular features on the growth behavior and concerning the relationship between growth and structural phase diagram. Finally, the potential of self-assembly as a route for the preparation of monolayers with pre-designed properties and SAMs as building blocks in heterostructures as well as application strategies are discussed.
Keywords:Self-assembled monolayer  Monolayer structure  Phase transitions  Growth kinetics  Adsorption  Physisorption  Chemisorption  Organics  Thiols  Silanes
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号