首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of H2 on the gas-phase decomposition of formic acid: a theoretical study
Authors:Hu Shao-Wen  Wang Xiang-Yun  Chu Tai-Wei  Liu Xin-Qi
Institution:Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China 100871. sw-hu@163.com
Abstract:Gas-phase decomposition of formic acid results in final products CO + H2O and CO2 + H2. Experimentally, the CO/CO2 ratio tends to be large, in contradiction with mechanism studies, which show almost equal activation energies for dehydration and decarboxylation. In this work, the influence of H2 on the decomposition mechanism of HCOOH was explored using ab initio calculations at the CCSD(T)/6-311++G**//MP2/6-311++G** level. It was found that, in the presence of H2, the reaction channels leading to CO + H2O are more than those leading to CO2 + H2. With competitive energy, H2 addition to HCOOH can reduce the latter into HCHO, which then dissociates into CO + H2 catalyzed by H2O. Compared to trans-HCOOH, cis-HCOOH and cis-C(OH)2, conformers required for decarboxylation, are less populated due to interactions with H2.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号