首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Investigation of spin-flip reactions of Zr + CH3CN by relativistic density functional theory
Authors:Li Qiang  Chen Xian-Yang  Qiu Yi-Xiang  Wang Shu-Guang
Institution:School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China.
Abstract:To explore the details of the reaction mechanisms of Zr atoms with acetonitrile molecules, the triplet and singlet spin-state potential energy surfaces have been investigated. Density functional theory (DFT) with the relativistic zero-order regular approximation at the PW91/TZ2P level has been applied. The complicated minimum energy reaction path involves four transition states (TS), stationary states 1-5 and one spin inversion (indicated by ?): (3)Zr + NCCH(3) → (3)Zr-η(1)-NCCH(3) ((3)1) → (3)TS(1/2) → (3)Zr-η(2)-(NC)CH(3) ((3)2) → (3)TS(2/3) → (3)ZrH-η(3)-(NCCH(2)) ((3)3) → (3)TS(3/4) → CNZrCH(3) ((3)4) ? (1)TS(4/5) → CN(ZrH)CH(2) ((1)5). The minimum energy crossing point was determined with the help of the DFT fractional-occupation-number approach. The spin inversion leading from the triplet to the singlet state facilitates the activation of a C-H bond, lowering the rearrangement-barrier by 78 kJ/mol. The overall reaction is calculated to be exothermic by about 296 kJ/mol. All intermediate and product species were frequency and NBO analyzed. The species can be rationalized with the help of Lewis type formulas.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号