首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Computational study on the kinetics and mechanisms for the unimolecular decomposition of formic and oxalic acids
Authors:Chang Jee-Gong  Chen Hsin-Tsung  Xu Shucheng  Lin M C
Institution:National Center for High-performance Computing, Taiwan. changjg@nchc.org.tw
Abstract:The kinetics and mechanisms for the unimolecular decomposition reactions of formic acid and oxalic acid have been studied computationally by the high-level G2M(CC1) method and microcanonical RRKM theory. There are two reaction pathways in the decomposition of formic acid: The dehydration process starting from the Z conformer is found to be the dominant, whereas the decarboxylation reaction starting from the E conformer is less competitive. The predicted rate constants for the dehydration and decarboxylation reactions are in good agreement with the experimental data. The calculated CO/CO2 ratio, 13.6-13.9 between 1300 and 2000 K, is in close agreement with the ratio of 10 measured experimentally by Hsu et al. (In The 19th International Symposium on Combustion; The Combustion Institute: Pittsburgh, PA, 1983; p 89). For oxalic acid, its isomer with two intramolecular hydrogen bonds is the most stable structure, similar to earlier reports. Two primary decomposition channels of oxalic acid producing CO2+HOCOH with barriers of 33-36 kcal/mol and CO2+CO+H2O with a barrier of 39 kcal/mol were found. At high temperatures, the latter process becomes more competitive. The rate constant predicted for the formation of CO2 and HOCOH (the precursor of HCOOH) agrees well with available experimental data. The mechanism for the isomerization of HOCOH to HCOOH is also discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号