首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Absolute configuration and conformation analysis of 1-phenylethanol by matrix-isolation infrared and vibrational circular dichroism spectroscopy combined with density functional theory calculation
Authors:Shin-ya Kei  Sugeta Hiromu  Shin Saeko  Hamada Yoshiaki  Katsumoto Yukiteru  Ohno Keiichi
Institution:Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
Abstract:The absolute configuration and conformation of 1-phenylethanol (1-PhEtOH) have been determined by matrix-isolation infrared (IR) and vibrational circular dichroism (VCD) spectroscopy combined with quantum chemical calculations. Quantum chemical calculations have identified that there are three conformers, namely, I, II, and III, in which characteristic intramolecular interactions are found. The IR spectrum-conformation correlation for 1-PhEtOH has been developed by the Ar matrix-isolation IR measurement and used for the assignments of the observed IR bands. In a dilute CCl(4) solution, 1-PhEtOH exists predominantly as conformer I along with a trace amount of conformer II. By considering conformations and intermolecular hydrogen-bonding in the spectral simulation for (S)-1-PhEtOH, we have successfully reproduced the VCD spectrum of (-)-1-PhEtOH observed in a dilute CS(2) solution. Thus, (-)-1-PhEtOH is of S-configuration and conformer I in the dilute solution. The same method has been applied to analyze the VCD spectra measured in the liquid state of (-)-1-PhEtOH. The absolute configuration of 1-PhEtOH in the condensed phase is enabled by identifying VCD bands that are insensitive to conformational changes and intermolecular interactions. The present work provides a combinatorial procedure for determination of both the absolute configuration and the conformation of chiral molecules in a dilute solution and condensed phase.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号