首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The electronic spectra of the sandwich stacked PFBT: a theoretical study
Authors:Wang Jing  Gu Jiande  Leszczynski Jerzy
Institution:Interdisciplinary Nanotoxicity Center, Department of Chemistry, Jackson State University, Jackson, Mississippi 39217, United States.
Abstract:Stacked models that include 9,9'-bis(6'-N,N,N-trimethylammonium)hexyl]fluorene-co-alt-4,7-(2,1,3-benzothiadiazole)dibromide (F(BT)F) monomer sandwiched between two stacked 2,1,3-benzothiadiazole (BT) units were explored using theoretical approaches. Molecular structures and the optical characteristics of the investigated species were investigated at the M06-2X/6-311G(d,p)//TD-M06-2X/6-311G(d,p) level of theory. In all models, the electronic excitation to the lowest singlet ππ* excited state (S1(ππ*)) is governed by the highest occupied molecular orbital to lowest unoccupied molecular orbital (HOMO → LUMO) transitions. The obtained results suggest that stacking interaction might have only minor effects on the transition energy for both absorption and emission processes. Instead, the reduction in the excitation energy of the stacked complexes should be attributed to the dipole-dipole interaction. The larger the interaction energy of the stacked models, the bigger the observed differences between absorption-emission energies. The presence of the solvation medium with small dielectric constant may increase the absorption-emission energy differences. It is expected that the largest absorption-emission shift can be observed in the benzene solution.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号