首页 | 本学科首页   官方微博 | 高级检索  
     检索      


N-Doped Carbon Nanofibers Encapsulating CoO@Co9S8 Nanoparticles: Preparation from S-Rich Co32 Coordination Cluster Precursors by Electrospinning and Application for Superior Li-ion Storage
Authors:YANG Siran  AI Feixue  LI Ziping  ZHAO Guiyan  BI Yanfeng
Institution:School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
Abstract:Thiacalixarene-supported Co32nanoclusters encapsulated in polyacrylonitrile nanofibers(Co32@PAN-NFs) by electrospinning have been utilized as precursors to fabricate N-doped CoO@Co9S8 carbon nanofibers(CoO@Co9S8@CNFs) for superior Li-ion storage. The S-rich Co32 clusters capped by organic sheets afforded the well dispersed cobalt oxide/sulfide nanoparticles embedded in carbon nanofiber composites by direct calcination. The N-doped CoO@Co9S8@CNFs nanocomposites have been utilized as anode materials for lithium ion battery with the reversible capabilities being of 1051.8, 967.6, 894.7, 782.7, 669.5 and 525.4 mA·h/g at 0.1, 0.2, 0.5, 1, 2 and 3 A/g, respectively. The CoO@Co9S8@CNFs also showed a relatively high stable capacity of 551.7 mA·h/g at the current density of 1 A/g after 200 cycles of rate experiments. The as-obtained N-doped CoO@Co9S8@CNFs nanocomposites exhibited superior reversible capacity, rate performance, Coulomb efficiency(74.5% vs. 63.9%) and cyclic stability comparing with the CoO@Co9S8@C derived from simple annealing of Co32 templates.
Keywords:Metal cluster precursor  Carbon nanofiber  Electrospinning  Li-ion storage  
点击此处可从《高等学校化学研究》浏览原始摘要信息
点击此处可从《高等学校化学研究》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号