首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rapid room temperature synthesis of electrocatalytically active Au nanostructures
Authors:Das Ashok Kumar  Raj C Retna
Institution:Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India.
Abstract:We describe a facile route for the one-pot room temperature synthesis of anisotropic Au nanostructures in aqueous solution in the absence of seeds or surfactants and their electrocatalytic activity. The Au nanostructures were synthesized using piperazine derivatives 1-(2-hydroxyethyl)piperazine and 1,4-Bis(2-hydroxyethyl)piperazine as reducing agents. The Au nanostructures were characterized by spectral, transmission electron microscopic (TEM), X-ray diffraction and electrochemical measurements. The absorption spectrum of colloidal nanoparticles displays two bands ~580 and ~930 nm, corresponding to the dipole and quadrupole plasmon resonance, respectively. TEM measurements show that the Au nanostructures have penta-twined polyhedral shape with an average size of 52 nm. X-ray and selected area electron diffraction patterns reveal the existence of face centered cubic nanocrystalline Au. The concentration of Au(III) controls the stability of the nanoparticles. The nanoparticles were immobilized on 3-D silicate network pre-assembled on a conducting support to examine their electrocatalytic activity. The nanoparticle-based electrochemical interface was characterized by spectral, voltammetric and impedance measurements. The nanoparticle shows high catalytic activity in the oxidation of NADH and reduction of oxygen. Unique inverted 'V' shape voltammogram was obtained for the oxidation of NADH at less positive potential. The nanoparticle-based interface favors two-step four-electron reduction of oxygen to water in neutral pH. Significant decrease in the overpotential for the oxidation of NADH and reduction of oxygen with respect to the polycrystalline Au electrode was observed. The electrocatalytic performance of the polyhedral nanoparticle is compared with the conventional citrate stabilized spherical nanoparticles.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号