首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Chitosan-mediated in situ biomolecule assembly in completely packaged microfluidic devices
Authors:Park Jung Jin  Luo Xiaolong  Yi Hyunmin  Valentine Theresa M  Payne Gregory F  Bentley William E  Ghodssi Reza  Rubloff Gary W
Institution:Institute for Systems Research, University of Maryland, College Park, MD 20742, USA.
Abstract:We report facile in situ biomolecule assembly at readily addressable sites in microfluidic channels after complete fabrication and packaging of the microfluidic device. Aminopolysaccharide chitosan's pH responsive and chemically reactive properties allow electric signal-guided biomolecule assembly onto conductive inorganic surfaces from the aqueous environment, preserving the activity of the biomolecules. A transparent and nonpermanently packaged device allows consistently leak-free sealing, simple in situ and ex situ examination of the assembly procedures, fluidic input/outputs for transport of aqueous solutions, and electrical ports to guide the assembly onto the patterned gold electrode sites within the channel. Both in situ fluorescence and ex situ profilometer results confirm chitosan-mediated in situ biomolecule assembly, demonstrating a simple approach to direct the assembly of biological components into a completely fabricated device. We believe that this strategy holds significant potential as a simple and generic biomolecule assembly approach for future applications in complex biomolecular or biosensing analyses as well as in sophisticated microfluidic networks as anticipated for future lab-on-a-chip devices.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号